Gunnar Jeschke: Katalogdaten im Herbstsemester 2022

NameHerr Prof. Dr. Gunnar Jeschke
LehrgebietElektronenspinresonanz
Adresse
Inst. Mol. Phys. Wiss.
ETH Zürich, HCI F 227
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telefon+41 44 632 57 02
E-Mailgunnar.jeschke@phys.chem.ethz.ch
DepartementChemie und Angewandte Biowissenschaften
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
529-0015-00LPhysikalische Chemie3 KP2V + 1UG. Jeschke, D. Klose
KurzbeschreibungThermodynamische Grundlagen von Phasengleichgewichten, intermolekularen Wechselwirkungen und molekularer Selbstassoziation und Kinetik von chemischen Reaktionen und Transportprozessen
LernzielDer Kurs vermittelt die physikalisch-chemischen Grundlagen wichtiger Prozesse in lebenden Zellen und Organismen sowie von Arbeitstechniken in der Biochemie und Molekularbiologie. Die Studierenden lernen

1. Die Beurteilung von Gleichgewichten anhand des chemischen Potentials

2. Die Interpretation von Phasendiagrammen

3. Welche Wechselwirkungen zwischen Molekülen in lebend Zellen wichtig sind

4. Warum es zur Selbstorganisation von Molekülen zu Aggregaten kommt

5. Welche physikalisch-chemischen Grundlagen das Verhalten von Biomembranen bestimmen

6. Wodurch die Geschwindigkeit chemischer Reaktionen, insbesondere auch enzymatisch katalysierter Reaktionen bestimmt wird

7. Wodurch die Geschwindigkeit von Stoff- und Wärmetransport bestimmt wird
InhaltChemisches Potential, Vorhersage der Richtung von Prozessen, Phasengleichgewicht, Phasenregel, Phasendiagramme reiner Stoffe, kolligative Eigenschaften, Osmose, Dialyse, Grenzflächenspannung, intermolekulare Wechselwirkungen, hydrophober Effekt, Hydrophilie und Denaturierung, Amphiphile, Grundlagen der Selbstassoziation, Mizellen, Packungsparameter, Doppelschichten, Vesikel, Membranen, Elementarreaktionen, Parallelreaktionen, Folgereaktionen, Eyring-Theorie, Enzymkinetik, Diffusion, Wärmeleitung, aktiver Transport
SkriptEin Skript liegt vor
LiteraturZusätzlich zum Skript kann der Stoff am Besten mit zwei englischsprachigen Lehrbüchern vertieft werden:

Marc R. Roussel, A Life Scientist's Guide to Physical Chemistry, Cambridge University Press, 2012

Jacob Israelachvili, Intermoleculr and Surface Forces, Academic Press, 1992
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengefördert
Verfahren und Technologiengefördert
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Entscheidungsfindunggefördert
Medien und digitale Technologiengefördert
Problemlösunggefördert
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengefördert
Kritisches Denkengefördert
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
529-0053-00LPolymer Physics Methods for Unstructured Biomolecules3 KP2VM. Yulikov, G. Jeschke
KurzbeschreibungThe course will provide the "polymer physics view" for the broad area of bio-polymers research. This will include simple and advanced concepts, forming the theoretical "language", critical overview of experimental methods, including the differences in characterization of synthetic and bio-polymers, concepts for modelling conformational ensembles of unstructured bio-polymers.
LernzielFrom the fundamental education point, this course will systematically overview the power of the thermodynamic description, and the interplay between the energy and the entropy for the phenomena that happen at the edge of near equivalence of the thermal energy and the inter-molecular interaction energy.

Due to complexity of the bio-molecular interactions, the most successful research approaches in the field of unstructured bio-polymers are based on a clever combination of several structural and spectroscopic methods.

Therefore, in this course, there will be a good opportunity to introduce the cross-validation analysis based on complimentary spectroscopic methods, to see examples from real research on different accuracy and different applicability ranges of experimental methods, and to discuss how very different spectroscopic data types can be combined to enhance the understanding of a bio-polymer system.
Inhalt- Overview of unstructured bio-polymers and bio-polymers with unstructured domains.

- Overview of bio-molecular interactions and interactions to the solvent molecules: types of interactions, energy scales, time scales, length scales.

- Overview of spectroscopic methods to characterize the overall conformational properties of unstructured bio-polymers, the strength of their interactions, the peculiarities of their interactions at the atomic level (fluorescence methods, magnetic resonance methods, scattering methods, cross linking methods).

- Comparison of these methods in respect to their applicability range, sensitivity range, accuracy, type of the data.

- Thermodynamic concepts of bio-polymers, existing models for energy and entropy contributions: Flory theory for polymer chain conformational distribution, reversible gelation theory, electrochemical solvent effects, isotope effects, entropic effects for inhomogeneous distribution of interacting moieties over the polymer chain.

- Topics on nucleic acids: double helix vs. single strand stability, conformational ensembles, solvent interactions.

- Topics on unstructured proteins and protein domains: entropy contributions, reversible folding, crowding effects, liquid-liquid phase separation, RNA interactions, entropic terms in protein crystallization, entropic terms in reaction constants of interfering binding sites.

- Topics of polymer physics of carbohydrates.

- Site directed labeling of weakly interacting unstructured bio-molecules, disturbances, selection of reference states, interpretation of the data.

- Hybrid methods in studies of bio-polymers, their strength and challenges: accuracy and information content of different methods, ways to combine them, ways to model the bio-polymers based on hybrid spectroscopic data, ways to describe the broad conformational ensembles.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenEntscheidungsfindunggeprüft
Problemlösunggeprüft
529-0432-AALPhysical Chemistry IV: Magnetic Resonance
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
4 KP9RG. Jeschke, M. Ernst
KurzbeschreibungTheoretische Grundlagen der magnetischen Resonanz (NMR, ESR) und ausgewählte Anwendungsbeispiele.
LernzielEinführung in die Grundlagen der magnetischen Resonanz in isotroper und anisotroper phase.
InhaltTheoretische und experimentelle Grundlagen der magnetischen Resonanz-Spektroskopie (Kernresonanz (NMR) und Elektronenspinresonanz (ESR)) in flüssiger und fester Phase. Klassische Beschreibung mittels der Bloch-Gleichungen, chemischer Austausch und zweidimensionale Exchange-Spektroskopie. Fourier-Spektroskopie, Echo-Phänomene und "Puls trickery". Interpretation der NMR Parameter wie chemische Verschiebung, skalare Kopplung und Dipolkopplung und Relaxationszeiten. Grundlagen der quantenmechanischen Beschreibung im Dichteoperatorformalismus. Die wichtigsten Wechselwirkungen in der magnetischen Resonanz in isotroper und anisotroper Phase und deren Hamilton-Operatoren. Anwendungen aus der Chemie, Biologie, Physik und Medizin, z.B. Ermittlung der dreidimensionalen Molekülstruktur, insbesondere von (biologischen) Makromolekülen, Bestimmung der Struktur von paramagnetischen Verbindungen, bildgebende NMR/MRI.
Skriptwird in der Vorlesung verteilt (in english)
Literatursee http://www.ssnmr.ethz.ch/education/PC_IV_Lecture
529-0432-00LPhysikalische Chemie IV: Magnetische Resonanz4 KP3GG. Jeschke, R. Riek
KurzbeschreibungTheoretische Grundlagen der magnetischen Resonanz (NMR, ESR) und ausgewählte Anwendungsbeispiele.
LernzielEinführung in die Grundlagen der magnetischen Resonanz in isotroper und anisotroper phase.
InhaltTheoretische und experimentelle Grundlagen der magnetischen Resonanz-Spektroskopie (Kernresonanz (NMR) und Elektronenspinresonanz (ESR)) in flüssiger und fester Phase. Klassische Beschreibung mittels der Bloch-Gleichungen, chemischer Austausch und zweidimensionale Exchange-Spektroskopie. Fourier-Spektroskopie, Echo-Phänomene und "Puls trickery". Interpretation der NMR Parameter wie chemische Verschiebung, skalare Kopplung und Dipolkopplung und Relaxationszeiten. Grundlagen der quantenmechanischen Beschreibung im Dichteoperatorformalismus. Die wichtigsten Wechselwirkungen in der magnetischen Resonanz in isotroper und anisotroper Phase und deren Hamilton-Operatoren. Anwendungen aus der Chemie, Biologie, Physik und Medizin, z.B. Ermittlung der dreidimensionalen Molekülstruktur, insbesondere von (biologischen) Makromolekülen, Bestimmung der Struktur von paramagnetischen Verbindungen, bildgebende NMR/MRI.
Skriptwird in der Vorlesung verteilt (in english)
Literatursee http://www.ssnmr.ethz.ch/education/PC_IV_Lecture
529-0443-01LAdvanced Magnetic Resonance Information
Findet dieses Semester nicht statt.
6 KP3GG. Jeschke, A. Barnes
KurzbeschreibungThe course is for advanced students and covers selected topics from magnetic resonance spectroscopy. This semester, the lecture will introduce and discuss the dynamics of electron-nuclear spin systems and experiments based on hyperfine interactions in electron paramagnetic resonance (EPR) spectroscopy and dynamic nuclear polarization (DNP) for sensitivity enhancement in NMR.
LernzielThe course aims at enabling students to understand and design experiments that are based on hyperfine coupling between electron and nuclear spins. This includes analytical and numerical treatment of spin dynamics as well as instrumental aspects. Additionally, students will learn how to use hyperfine couplings to increase sensitivity in solid state NMR via dynamic nuclear polarization (DNP), with an emphasis on the instrumentation required to perform DNP with magic angle spinning (MAS) NMR.
InhaltThe course starts with a recapitulation of density operator and product operator formalism with special emphasis on electron-nuclear spin systems in the solid state. We then treat basic phenomena, such as passage effects, avoided level crossings, and hyperfine decoupling. Based on these foundations, we discuss polarization transfer from the electron to the nuclear spin and back, as well as spin diffusion as a mechanism for polarizing nuclear spins beyond the immediate vicinity of the electron spin. The second half of the course will cover dynamic nuclear polarization (DNP), with a focus on instrumentation required to perform pulsed DNP with magic angle spinning (MAS) at ultra-high magnetic fields. A review of salient interactions in the NMR solid state NMR Hamiltonian, DNP mechanisms, and electron decoupling with MAS will motivate discussions of technology development. Specific technologies to be covered include, but are not limited to, frequency agile gyrotron oscillators, corrugated waveguides, microwave lenses, strategies for creating pulsed and frequency chirped microwaves, spherical MAS rotors and supporting stators, high temperature superconductor (HTS) based compact magnets, and radio-frequency circuits for multinuclear spin control and detection.

Prerequisite: A basic knowledge of Magnetic Resonance, e.g. as covered in the Lecture Physical Chemistry IV, or the book "Spin Dynamics" by Malcolm Levitt.
SkriptA script which covers the topics will be distributed in the lecture and will be accessible through the course Moodle
529-0499-00LPhysical Chemistry0 KP1KM. Reiher, A. Barnes, G. Jeschke, B. H. Meier, F. Merkt, J. Richardson, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner
KurzbeschreibungInstitute-Seminar covering current research Topics in Physical Chemistry
Lernziel