## Gunnar Jeschke: Catalogue data in Autumn Semester 2021 |

Name | Prof. Dr. Gunnar Jeschke |

Field | Electron Paramagnetic Resonance |

Address | Inst. Mol. Phys. Wiss. ETH Zürich, HCI F 227 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |

Telephone | +41 44 632 57 02 |

gunnar.jeschke@phys.chem.ethz.ch | |

Department | Chemistry and Applied Biosciences |

Relationship | Full Professor |

Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

529-0015-00L | Physical Chemistry | 3 credits | 2V + 1U | G. Jeschke, D. Klose | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Thermodynamic foundations of phase equilibria, intermolecular interactions, and molecular self-assembly; kinetics of chemical reactions and transport processes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | This course teaches physical-chemical foundations of important processes in living cells and organisms as well as of working techniques in biochemistry and molecular biology. Students learn: 1. Evaluation of chemical equilibria based on chemical potential 2. Interpretation of phase diagrams 3. Which interactions between molecules are important in living cells 4. Why molecules self-organize into aggregates 5. Which physical-chemical basics determine behavior of biomembranes 6. What determines the rate of chemical reactions, in particular also of enzymatically catalyzed reactions 7. What determines the transport rate of matter and heat | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | chemical potential, prediction of the direction of processes, phase equilibria, phase rule, phase diagrams of pure substances, colligative properties, osmosis, dialysis, surface tension, intermolecular interactions, hydrophobic effect, hydrophilic effect and denaturation, amphiphiles, basics of self-association, micelles, packing parameter, double layers, vesicles, membranes, elementary reactions, parallel reactions, consecutive reactions, Eyring theory, enzyme kinetics, diffusion, heat conduction, active transport | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | A lecture script is provided | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | In addition to the lecture script, the following two books can be used to gain deeper understanding Marc R. Roussel, A Life Scientist's Guide to Physical Chemistry, Cambridge University Press, 2012 Jacob Israelachvili, Intermoleculr and Surface Forces, Academic Press, 1992 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

529-0432-AAL | Physical Chemistry IV: Magnetic ResonanceEnrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 4 credits | 9R | G. Jeschke, M. Ernst | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Theoretical foundations of magnetic resonance (NMR,EPR) and selected applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | Introduction to magnetic resonance in isotropic and anisotropic phase. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The course gives an introduction to magnetic resonance spectroscopy (NMR and EPR) in liquid, liquid crystalline and solid phase. It starts from a classical description in the framework of the Bloch equations. The implications of chemical exchange are studied and two-dimensional exchange spectroscopy is introduced. An introduction to Fourier spectroscopy in one and two dimensions is given and simple 'pulse trickery' is described. A quantum-mechanical description of magnetic resonance experiments is introduced and the spin Hamiltonian is derived. The chemical shift term as well as the scalar, dipolar and quadrupolar terms are discussed. The product-operator formalism is introduced and various experiments are described, e.g. polarization transfer. Applications in chemistry, biology, physics and medicine, e.g. determination of 3D molecular structure of dissolved molecules, determination of the structure of paramagnetic compounds and imaging (MRI) are presented. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | handed out in the lecture (in english) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | see http://www.ssnmr.ethz.ch/education/PC_IV_Lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

529-0432-00L | Physical Chemistry IV: Magnetic Resonance | 4 credits | 3G | G. Jeschke, M. Ernst | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Theoretical foundations of magnetic resonance (NMR,EPR) and selected applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | Introduction to magnetic resonance in isotropic and anisotropic phase. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The course gives an introduction to magnetic resonance spectroscopy (NMR and EPR) in liquid, liquid crystalline and solid phase. It starts from a classical description in the framework of the Bloch equations. The implications of chemical exchange are studied and two-dimensional exchange spectroscopy is introduced. An introduction to Fourier spectroscopy in one and two dimensions is given and simple 'pulse trickery' is described. A quantum-mechanical description of magnetic resonance experiments is introduced and the spin Hamiltonian is derived. The chemical shift term as well as the scalar, dipolar and quadrupolar terms are discussed. The product-operator formalism is introduced and various experiments are described, e.g. polarization transfer. Applications in chemistry, biology, physics and medicine, e.g. determination of 3D molecular structure of dissolved molecules, determination of the structure of paramagnetic compounds and imaging (MRI) are presented. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | handed out in the lecture (in english) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | see http://www.ssnmr.ethz.ch/education/PC_IV_Lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

529-0441-00L | Signal Processing | 6 credits | 3G | G. Jeschke, M. Yulikov | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Introduction of the basics of signal processing in spectroscopy. Fourier transformation, linear response theory, stochastic signals, digital data processing, Fourier spectroscopy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | Basics of signal processing in spectroscopy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Fourier series, Fourier transformation, Laplace transformation, delta functions, linear system theory. Basic concepts of electronics: electronic noise, modulation, filters, lock-in amplifier. Stochastic signals: parameters of random variables, characterization of stochastic processes, correlation functions, random signals in the frequency domain. Digital data processing: sampling processes, A/D conversion, discrete Fourier transformation, apodisation, digital filters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Script available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

529-0443-01L | Advanced Magnetic Resonance | 6 credits | 3G | G. Jeschke, A. Barnes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The course is for advanced students and covers selected topics from magnetic resonance spectroscopy. This semester, the lecture will introduce and discuss the dynamics of electron-nuclear spin systems and experiments based on hyperfine interactions in electron paramagnetic resonance (EPR) spectroscopy and dynamic nuclear polarization (DNP) for sensitivity enhancement in NMR. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The course aims at enabling students to understand and design experiments that are based on hyperfine coupling between electron and nuclear spins. This includes analytical and numerical treatment of spin dynamics as well as instrumental aspects. Additionally, students will learn how to use hyperfine couplings to increase sensitivity in solid state NMR via dynamic nuclear polarization (DNP), with an emphasis on the instrumentation required to perform DNP with magic angle spinning (MAS) NMR. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The course starts with a recapitulation of density operator and product operator formalism with special emphasis on electron-nuclear spin systems in the solid state. We then treat basic phenomena, such as passage effects, avoided level crossings, and hyperfine decoupling. Based on these foundations, we discuss polarization transfer from the electron to the nuclear spin and back, as well as spin diffusion as a mechanism for polarizing nuclear spins beyond the immediate vicinity of the electron spin. The second half of the course will cover dynamic nuclear polarization (DNP), with a focus on instrumentation required to perform pulsed DNP with magic angle spinning (MAS) at ultra-high magnetic fields. A review of salient interactions in the NMR solid state NMR Hamiltonian, DNP mechanisms, and electron decoupling with MAS will motivate discussions of technology development. Specific technologies to be covered include, but are not limited to, frequency agile gyrotron oscillators, corrugated waveguides, microwave lenses, strategies for creating pulsed and frequency chirped microwaves, spherical MAS rotors and supporting stators, high temperature superconductor (HTS) based compact magnets, and radio-frequency circuits for multinuclear spin control and detection. Prerequisite: A basic knowledge of Magnetic Resonance, e.g. as covered in the Lecture Physical Chemistry IV, or the book "Spin Dynamics" by Malcolm Levitt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | A script which covers the topics will be distributed in the lecture and will be accessible through the course Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

529-0499-00L | Physical Chemistry | 1 credit | 1K | M. Reiher, A. Barnes, G. Jeschke, B. H. Meier, F. Merkt, J. Richardson, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Institute-Seminar covering current research Topics in Physical Chemistry | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective |