Jan Carmeliet: Catalogue data in Autumn Semester 2016 |
Name | Prof. Dr. Jan Carmeliet |
Field | Building Physics |
Address | Professur für Bauphysik ETH Zürich, CLA J 27 Tannenstrasse 3 8092 Zürich SWITZERLAND |
Telephone | +41 44 633 28 55 |
cajan@ethz.ch | |
Department | Architecture |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
051-0515-16L | Building Physics IV: Urban Physics | 3 credits | 3G | J. Carmeliet, J. Allegrini, D. W. Brunner, C. Schär, H. Wernli, J. M. Wunderli | |
Abstract | Urban physics: wind, wind comfort, pollutant dispersion, natural ventilation, driving rain, heat islands, climate change and weather conditions, urban acoustics and energy use in the urban context. | ||||
Learning objective | - Basic knowledge of the global climate and the local microclimate around buildings - Impact of urban environment on wind, ventilation, rain, pollutants, acoustics and energy, and their relation to comfort, durability, air quality and energy demand - Application of urban physics concepts in urban design | ||||
Content | - Climate Change. The Global Picture: global energy balance, global climate models, the IPCC process. Towards regional climate scenarios: role of spatial resolution, overview of approaches, hydrostatic RCMs, cloud-resolving RCMs - Urban micro climate and comfort: urban heat island effect, wind flow and radiation in the built environment, convective heat transport modelling, heat balance and ventilation of urban spaces - impact of morphology, outdoor wind comfort, outdoor thermal comfort, - Urban energy and urban design. Energy performance of building quarters and cities, decentralized urban energy production and storage technologies, district heating networks, optimization of energy consumption at district level, effect of the micro climate, urban heat islands, and climate change on the energy performance of buildings and building blocks. - Wind driving rain (WDR): WDR phenomena, WDR experimental and modeling, wind blocking effect, applications and moisture durability - Pollutant dispersion. pollutant cycle : emission, transport and deposition, air quality - Urban acoustics. noise propagation through the urban environment, meteorological effects, urban acoustic modeling, noise reduction measures, urban vegetation | ||||
Lecture notes | All material is provided via the website of the chair (www.carmeliet.arch.ethz.ch/Education/). | ||||
Literature | All material is provided via the website of the chair (www.carmeliet.arch.ethz.ch/Education/). | ||||
Prerequisites / Notice | No prior knowledge is required. | ||||
051-0519-00L | Building Physics II: Moisture | 3 credits | 3G | J. Carmeliet, T. Defraeye | |
Abstract | 70% of all construction problems are related to moisture. This course aims at providing the necessary theoretical background in order to foresee and avoid these problems. | ||||
Learning objective | • to develop a basic understanding of mass transport and buffering • to become aware of potential moisture-related damage and health risks • to learn how to (i) design building components and (ii) assess their hygrothermal performance | ||||
Content | • hygrothermal loads • conservation of mass • dry air: constitutive behaviour, transport, potential problems and solutions • moist air: constitutive behaviour, transport, potential problems and solutions • liquid water: constitutive behaviour, transport, potential problems and solutions • moisture-induced degradation processes • case studies • exercises | ||||
Lecture notes | Handouts, supporting material and exercises are provided online (http://www.carmeliet.arch.ethz.ch/Education/ with Building Physics II: Moisture in the Documents section). The course syllabus can be bought at the Chair of Building Physics. | ||||
Literature | All material is provided online (http://www.carmeliet.arch.ethz.ch/Education/ with Building Physics II: Moisture in the Documents section) | ||||
Prerequisites / Notice | Prior knowledge of "BP I: heat" is required. | ||||
051-0853-00L | Building Materials I | 2 credits | 2V | J. Carmeliet, M. Koebel, O. von Trzebiatowski, F. Winnefeld, T. Zimmermann | |
Abstract | Building Materials - Structure, Quality, Usage concrete and other mineral materials metals, wood, glass and polymers ecological aspects | ||||
Learning objective | The lecture describes the fundamental properties of the most important construction materials: concrete and other mineral materials, metals, wood, glass and polymers. Furthermore, the content includes the relevant ecological aspects such as availability of raw materials, effort for production, emission of hazardous substances, disposal and recycling are treated as well. | ||||
Content | The lecture describes the fundamental properties of the most important construction materials: concrete and other mineral materials, metals, wood, glass and polymers. Furthermore, the content includes the relevant ecological aspects such as availability of raw materials, effort for production, emission of hazardous substances, disposal and recycling are treated as well. | ||||
051-1215-16L | Integrated Discipline Building Physics (J.Carmeliet) Limited number of participants. Enrolment under mystudies and per email to the chair is compulsory by the end of the 1st semester week at the latest! Please specify your design theme as well as the name of the supervising chair. | 3 credits | 2U | J. Carmeliet | |
Abstract | Hygrothermal analysis of a building wall component Detailing regarding hygrothermal behaviour | ||||
Learning objective | The goal is that the students learn to evaluate hygrothermal performance of the building in the different stages of the design process. The students learn to evaluate and optimize their design, to choose adequate wall solutions and materials, to design details from a perspective of hygrothermal performance. | ||||
Content | Hygrothermal analysis of a building wall component Detailing regarding hygrothermal behaviour | ||||
Prerequisites / Notice | There is a limited number of places. Interested students may enroll at mystudies.ethz.ch and by an email to the chair until the end of the second week of the semester. The topic and the design chair should be mentioned in this email. | ||||
063-0515-16L | Building Physics (Thesis Elective) Prerequisites for Urban Physics: successful termination of "Building Physics IV: Urban Physics" . For Building Physics in general: Knowledge in the relevant field. | 6 credits | 11A | J. Carmeliet | |
Abstract | Within three elective courses the students need to fulfill an elective work (seminar work). Elective works serve the independent way of dealing with the contents of the according elective course. | ||||
Learning objective | The aim of the elective work is to gain comprehensive insight in specific issues related to urban physics and low-energy buildings. These issues may concern: wind & thermal comfort in the built environment, heat islands, cross-ventilation, driving rain, pollution dispersion, new technologies for low-energy buildings, design of building systems, optimal control. The work may include computational modelling and prototype testing in laboratory. | ||||
Content | The contents of these elective studies are expected to link to the subject matter of the attended course. | ||||
Prerequisites / Notice | It's imperative that the topic of the work is discussed with and accepted by the chair in advance. | ||||
066-0415-00L | Building Physics: Theory and Applications | 4 credits | 3V + 1U | J. Carmeliet, J. Allegrini, D. Derome | |
Abstract | Principles of heat and mass transport, hygro-thermal performance, durability of the building envelope and interaction with indoor and outdoor climates, applications. | ||||
Learning objective | The students will acquire in the following fields: - Principles of heat and mass transport and its mathematical description. - Indoor and outdoor climate and driving forces. - Hygrothermal properties of building materials. - Building envelope solutions and their construction. - Hygrothermal performance and durability. | ||||
Content | Principles of heat and mass transport, hygro-thermal performance, durability of the building envelope and interaction with indoor and outdoor climates, applications. | ||||
101-0177-00L | Building Physics: Moisture and Durability | 3 credits | 2G | J. Carmeliet, T. Defraeye | |
Abstract | Moisture transport and related degradation processes in building and civil engineering materials and structures; concepts of poromechanics and multiscale analysis; analysis of damage cases. | ||||
Learning objective | - Basic knowledge of moisture transport and related degradation processes in building and civil engineering materials and structures - Introduction to concepts of poromechanics and multiscale analysis - Application of knowledge by the analysis of damage cases | ||||
Content | 1. Introduction Moisture damage: problem statement Durability 2. Moisture Transport Description of moisture transport Determination of moisture transport properties Hysteresis Transport in cracked materials Damage and moisture transport in cracked media 3. Poromechanics Moisture and mechanics: poro-elasticity Poro-elasticity and salt crystallisation Poro-elasticity and damage Case studies 4. Multiscale analysis Problem statement Multiscale transport model Multiscale coupled transport - damage model | ||||
151-0906-00L | Frontiers in Energy Research This course is only for doctoral students. | 2 credits | 2S | M. Mazzotti, R. S. Abhari, J. Carmeliet, M. Filippini | |
Abstract | PhD students at ETH Zurich working in the broad area of energy present their research to their colleagues, to their advisors and to the scientific community. | ||||
Learning objective | Knowledge of advanced research in the area of energy. | ||||
Content | PhD students at ETH Zurich working in the broad area of energy present their research to their colleagues, to their advisors and to the scientific community. Every week there are two presentations, each structured as follows: 15 min introduction to the research topic, 15 min presentation of the results, 15 min discussion with the audience. | ||||
Lecture notes | Slides will be distributed. |