Andreas Franz Ruckstuhl: Katalogdaten im Frühjahrssemester 2020

NameHerr Prof. Dr. Andreas Franz Ruckstuhl
(Professor ZFH - Zürcher Hochschule für Angewandte Wissenschaften (ZHAW))
E-Mailandreasfranz.ruckstuhl@math.ethz.ch
DepartementMathematik
BeziehungDozent

NummerTitelECTSUmfangDozierende
401-6222-00LRobust and Nonlinear Regression Information Belegung eingeschränkt - Details anzeigen 2 KP1V + 1UA. F. Ruckstuhl
KurzbeschreibungIn a first part, the basic ideas of robust fitting techniques are explained theoretically and practically using regression models and explorative multivariate analysis.

The second part addresses the challenges of fitting nonlinear regression functions and finding reliable confidence intervals.
LernzielParticipants are familiar with common robust fitting methods for the linear regression models as well as for exploratory multivariate analysis and are able to assess their suitability for the data at hand.

They know the challenges that arise in fitting of nonlinear regression functions, and know the difference between classical and profile based methods to determine confidence intervals.

They can apply the discussed methods in practise by using the statistics software R.
InhaltRobust fitting: influence function, breakdown point, regression M-estimation, regression MM-estimation, robust inference, covariance estimation with high breakdown point, application in principal component analysis and linear discriminant analysis.

Nonlinear regression: the nonlinear regression model, estimation methods, approximate tests and confidence intervals, estimation methods, profile t plot, profile traces, parameter transformation, prediction and calibration
SkriptLecture notes are available
Voraussetzungen / BesonderesIt is a block course on three Mondays in June
447-6222-01LRobust Regression Belegung eingeschränkt - Details anzeigen
Nur für DAS und CAS in Angewandter Statistik.
1 KPA. F. Ruckstuhl
KurzbeschreibungThe basic ideas of robust fitting techniques are explained theoretically and practically using regression models and explorative multivariate analysis.
LernzielParticipants are familiar with common robust fitting methods for linear regression models as well as for exploratory multivariate analysis and are able to assess their suitability for the data at hand.
InhaltInfluence function, breakdown point, regression M-estimation, regression MM-estimation, robust inference, covariance estimation with high breakdown point, application in principal component analysis and linear discriminant analysis.
LiteraturLecture notes are available.
447-6222-02LNonlinear Regression Belegung eingeschränkt - Details anzeigen
Nur für DAS und CAS in Angewandter Statistik.
1 KPA. F. Ruckstuhl
KurzbeschreibungFitting nonlinear regression functions and determining reliable confidence intervals.
LernzielParticipants know the challenges that arise in fitting nonlinear regression functions. In addition, they are aware of the difference between classical and profile based methods to determine confidence intervals.
InhaltNonlinear regression models, estimation methods, approximate tests and confidence intervals, estimation methods, profile t plot, profile traces, parameter transformations, prediction and calibration.
SkriptLecture notes are available.