Emmanuel Kowalski: Katalogdaten im Frühjahrssemester 2020 |
Name | Herr Prof. Dr. Emmanuel Kowalski |
Lehrgebiet | Mathematik |
Adresse | Professur für Mathematik ETH Zürich, HG G 64.1 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 34 41 |
emmanuel.kowalski@math.ethz.ch | |
URL | http://www.math.ethz.ch/~kowalski |
Departement | Mathematik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-2000-00L | Scientific Works in Mathematics Zielpublikum: Bachelor-Studierende im dritten Jahr; Master-Studierende, welche noch keine entsprechende Ausbildung vorweisen können. | 0 KP | Ö. Imamoglu, E. Kowalski | ||
Kurzbeschreibung | Introduction to scientific writing for students with focus on publication standards and ethical issues, especially in the case of citations (references to works of others.) | ||||
Lernziel | Learn the basic standards of scientific works in mathematics. | ||||
Inhalt | - Types of mathematical works - Publication standards in pure and applied mathematics - Data handling - Ethical issues - Citation guidelines | ||||
Skript | Moodle of the Mathematics Library: https://moodle-app2.let.ethz.ch/course/view.php?id=519 | ||||
Voraussetzungen / Besonderes | Directive https://www.ethz.ch/content/dam/ethz/common/docs/weisungssammlung/files-en/declaration-of-originality.pdf | ||||
401-3109-65L | Probabilistic Number Theory ![]() Findet dieses Semester nicht statt. | 8 KP | 4G | E. Kowalski | |
Kurzbeschreibung | The course presents some results of probabilistic number theory in a unified manner, including distribution properties of the number of prime divisors of integers, probabilistic properties of the zeta function and statistical distribution of exponential sums. | ||||
Lernziel | The goal of the course is to present some results of probabilistic number theory in a unified manner. | ||||
Inhalt | The main concepts will be presented in parallel with the proof of a few main theorems: (1) the Erdős-Wintner and Erdős-Kac theorems concerning the distribution of values of arithmetic functions; (2) the distribution of values of the Riemann zeta function, including Selberg's central limit theorem for the Riemann zeta function on the critical line; (3) the Chebychev bias for primes in arithmetic progressions; (4) functional limit theorems for the paths of partial sums of families of exponential sums. | ||||
Skript | The lecture notes for the class are available at https://www.math.ethz.ch/~kowalski/probabilistic-number-theory.pdf | ||||
Voraussetzungen / Besonderes | Prerequisites: Complex analysis, measure and integral; some probability theory is useful but the main concepts needed will be recalled. Some knowledge of number theory is useful but the main results will be summarized. | ||||
401-5110-00L | Number Theory Seminar ![]() | 0 KP | 1K | Ö. Imamoglu, P. S. Jossen, E. Kowalski, P. D. Nelson, R. Pink, G. Wüstholz | |
Kurzbeschreibung | Forschungskolloquium | ||||
Lernziel | Vorträge über neue Themen aus der Forschung. | ||||
Inhalt | Forschungsseminar in Algebra, Zahlentheorie und Geometrie, richtet sich insbesondere an Mitarbeiterinnen und Mitarbeiter sowie Doktorandinnen und Doktoranden. |