Paul Biran: Katalogdaten im Herbstsemester 2019 |
Name | Herr Prof. Dr. Paul Biran |
Lehrgebiet | Mathematik |
Adresse | Professur für Mathematik ETH Zürich, HG G 63.1 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 64 50 |
paul.biran@math.ethz.ch | |
URL | http://www.math.ethz.ch/~biranp |
Departement | Mathematik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-2303-00L | Funktionentheorie ![]() | 6 KP | 3V + 2U | P. Biran | |
Kurzbeschreibung | Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem. | ||||
Lernziel | Working knowledge of functions of one complex variables; in particular applications of the residue theorem. | ||||
Literatur | B. Palka: "An introduction to complex function theory." Undergraduate Texts in Mathematics. Springer-Verlag, 1991. E.M. Stein, R. Shakarchi: Complex Analysis. Princeton University Press, 2010 Th. Gamelin: Complex Analysis. Springer 2001 E. Titchmarsh: The Theory of Functions. Oxford University Press D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German) L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co. K.Jaenich: Funktionentheorie. Springer Verlag R.Remmert: Funktionentheorie I. Springer Verlag E.Hille: Analytic Function Theory. AMS Chelsea Publications | ||||
401-5580-00L | Symplectic Geometry Seminar ![]() | 0 KP | 2K | P. Biran, A. Cannas da Silva | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel | |||||
406-2303-AAL | Complex Analysis Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 6 KP | 13R | P. Biran | |
Kurzbeschreibung | Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, conformal mappings, Riemann mapping theorem. | ||||
Lernziel | |||||
Literatur | L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co. B. Palka: "An introduction to complex function theory." Undergraduate Texts in Mathematics. Springer-Verlag, 1991. R.Remmert: Theory of Complex Functions.. Springer Verlag E.Hille: Analytic Function Theory. AMS Chelsea Publication |