Niko Beerenwinkel: Katalogdaten im Frühjahrssemester 2018

Auszeichnung: Die Goldene Eule
NameHerr Prof. Dr. Niko Beerenwinkel
LehrgebietRechnergestützte Biologie
Adresse
Professur f. Computational Biology
ETH Zürich, D-BSSE, BSD G 264
Mattenstrasse 26
4058 Basel
SWITZERLAND
Telefon+41 61 387 31 69
E-Mailniko.beerenwinkel@bsse.ethz.ch
URLhttp://www.bsse.ethz.ch/cbg/people/nikob
DepartementBiosysteme
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
636-0301-00LCurrent Topics in Biosystems Science and Engineering2 KP1ST. Stadler, N. Beerenwinkel, Y. Benenson, K. M. Borgwardt, P. S. Dittrich, M. Fussenegger, A. Hierlemann, D. Iber, M. H. Khammash, D. J. Müller, S. Panke, R. Paro, R. Platt, S. Reddy, T. Schroeder, J. Stelling
KurzbeschreibungThis seminar will feature invited lectures about recent advances and developments in systems biology, including topics from biology, bioengineering, and computational biology.
LernzielTo provide an overview of current systems biology research.
InhaltThe final list of topics will be available at http://www.bsse.ethz.ch/education/.
636-0702-00LStatistical Models in Computational Biology6 KP2V + 1U + 2AN. Beerenwinkel
KurzbeschreibungThe course offers an introduction to graphical models and their application to complex biological systems. Graphical models combine a statistical methodology with efficient algorithms for inference in settings of high dimension and uncertainty. The unifying graphical model framework is developed and used to examine several classical and topical computational biology methods.
LernzielThe goal of this course is to establish the common language of graphical models for applications in computational biology and to see this methodology at work for several real-world data sets.
InhaltGraphical models are a marriage between probability theory and graph theory. They combine the notion of probabilities with efficient algorithms for inference among many random variables. Graphical models play an important role in computational biology, because they explicitly address two features that are inherent to biological systems: complexity and uncertainty. We will develop the basic theory and the common underlying formalism of graphical models and discuss several computational biology applications. Topics covered include conditional independence, Bayesian networks, Markov random fields, Gaussian graphical models, EM algorithm, junction tree algorithm, model selection, Dirichlet process mixture, causality, the pair hidden Markov model for sequence alignment, probabilistic phylogenetic models, phylo-HMMs, microarray experiments and gene regulatory networks, protein interaction networks, learning from perturbation experiments, time series data and dynamic Bayesian networks. Some of the biological applications will be explored in small data analysis problems as part of the exercises.
Skriptno
Literatur- Airoldi EM (2007) Getting started in probabilistic graphical models. PLoS Comput Biol 3(12): e252. doi:10.1371/journal.pcbi.0030252
- Bishop CM. Pattern Recognition and Machine Learning. Springer, 2007.
- Durbin R, Eddy S, Krogh A, Mitchinson G. Biological Sequence Analysis. Cambridge university Press, 2004