Marloes H. Maathuis: Catalogue data in Autumn Semester 2015

Name Prof. Dr. Marloes H. Maathuis
FieldStatistics
URLhttp://stat.ethz.ch/~maathuis
DepartmentMathematics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
401-3611-00LAdvanced Topics in Computational Statistics4 credits2VM. H. Maathuis, M. Mächler
AbstractThis lecture covers selected advanced topics in computational statistics, including various classification methods, the EM algorithm, clustering, handling missing data, and graphical modelling.
Learning objectiveStudents learn the theoretical foundations of the selected methods, as well as practical skills to apply these methods and to interpret their outcomes.
ContentThe course is roughly divided in three parts: (1) Supervised learning via (variations of) nearest neighbor methods, (2) the EM algorithm and clustering, (3) handling missing data and graphical models.
Lecture notesLecture notes.
Prerequisites / NoticeWe assume a solid background in mathematics, an introductory lecture in probability and statistics, and at least one more advanced course in statistics.
401-5620-00LResearch Seminar on Statistics Information 0 credits2KP. L. Bühlmann, L. Held, T. Hothorn, M. H. Maathuis, S. van de Geer, M. Wolf
AbstractResearch colloquium
Learning objective
401-5640-00LZüKoSt: Seminar on Applied Statistics Information 0 credits1KM. Kalisch, P. L. Bühlmann, R. Furrer, L. Held, T. Hothorn, M. H. Maathuis, M. Mächler, L. Meier, M. Robinson, C. Strobl, S. van de Geer
AbstractAbout 5 talks on applied statistics.
Learning objectiveSee how statistical methods are applied in practice.
ContentThere will be about 5 talks on how statistical methods are applied in practice.
Prerequisites / NoticeThis is no lecture. There is no exam and no credit points will be awarded. The current program can be found on the web:
http://stat.ethz.ch/events/zukost
Course language is English or German and may depend on the speaker.