Thomas Hofmann: Katalogdaten im Herbstsemester 2019

NameHerr Prof. Dr. Thomas Hofmann
LehrgebietDatenanalytik
Adresse
Dep. Informatik
ETH Zürich, CAB F 48.1
Universitätstrasse 6
8092 Zürich
SWITZERLAND
E-Mailthomas.hofmann@inf.ethz.ch
URLhttp://www.inf.ethz.ch/department/faculty-profs/person-detail.html?persid=148752
DepartementInformatik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
252-0945-09LDoctoral Seminar Machine Learning (HS19) Belegung eingeschränkt - Details anzeigen
Only for Computer Science Ph.D. students.

This doctoral seminar is intended for PhD students affiliated with the Institute for Machine Learning. Other PhD students who work on machine learning projects or related topics need approval by at least one of the organizers to register for the seminar.
2 KP2SJ. M. Buhmann, T. Hofmann, A. Krause, G. Rätsch
KurzbeschreibungAn essential aspect of any research project is dissemination of the findings arising from the study. Here we focus on oral communication, which includes: appropriate selection of material, preparation of the visual aids (slides and/or posters), and presentation skills.
LernzielThe seminar participants should learn how to prepare and deliver scientific talks as well as to deal with technical questions. Participants are also expected to actively contribute to discussions during presentations by others, thus learning and practicing critical thinking skills.
Voraussetzungen / BesonderesThis doctoral seminar of the Machine Learning Laboratory of ETH is intended for PhD students who work on a machine learning project, i.e., for the PhD students of the ML lab.
252-4811-00LMachine Learning Seminar Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 24.

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
2 KP2ST. Hofmann, G. Rätsch
KurzbeschreibungSeminal and recent papers in machine learning are presented and discussed.
LernzielThe seminar familiarizes students with advanced and recent ideas in machine learning. Original articles have to be presented, contexctualized, and critically reviewed. The students will learn how to structure a scientific presentation in English which covers the key ideas of a scientific paper.
InhaltThe seminar will cover a number of recent papers which have emerged as important contributions in the machine learning research community. The topics will vary from year to year but they are centered on methodological issues in machine learning like new learning algorithms, ensemble methods or new statistical models for machine learning applications.
LiteraturThe papers will be presented and allocated in the first session of the seminar.
Voraussetzungen / BesonderesBasic knowledge of machine learning as taught in undergraduate courses such as "252-0220-00 Introduction to Machine Learning" are required.
263-3210-00LDeep Learning Information 5 KP2V + 1U + 1AT. Hofmann
KurzbeschreibungDeep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.
LernzielIn recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.
Voraussetzungen / BesonderesThis is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

Advanced Machine Learning
https://ml2.inf.ethz.ch/courses/aml/

Computational Intelligence Lab
http://da.inf.ethz.ch/teaching/2019/CIL/

Introduction to Machine Learning
https://las.inf.ethz.ch/teaching/introml-S19

Statistical Learning Theory
http://ml2.inf.ethz.ch/courses/slt/

Computational Statistics
https://stat.ethz.ch/lectures/ss19/comp-stats.php

Probabilistic Artificial Intelligence
https://las.inf.ethz.ch/teaching/pai-f18
401-5680-00LFoundations of Data Science Seminar Information 0 KPP. L. Bühlmann, A. Bandeira, H. Bölcskei, J. M. Buhmann, T. Hofmann, A. Krause, A. Lapidoth, H.‑A. Loeliger, M. H. Maathuis, G. Rätsch, C. Uhler, S. van de Geer
KurzbeschreibungResearch colloquium
Lernziel