Name | Herr Prof. Dr. Renato Renner |
Lehrgebiet | Theoretische Physik |
Adresse | Institut für Theoretische Physik ETH Zürich, HIT K 41.2 Wolfgang-Pauli-Str. 27 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 34 58 |
Fax | +41 44 633 11 15 |
renner@itp.phys.ethz.ch | |
URL | http://www.itp.phys.ethz.ch/people/renner/ |
Departement | Physik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
402-0101-00L | The Zurich Physics Colloquium | 0 KP | 1K | R. Renner, G. Aeppli, C. Anastasiou, N. Beisert, G. Blatter, S. Cantalupo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, M. Gaberdiel, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, B. Moore, D. Pescia, A. Refregier, A. Rubbia, K. Schawinski, T. C. Schulthess, M. Sigrist, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev, O. Zilberberg | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel | |||||
Voraussetzungen / Besonderes | Occasionally, talks may be delivered in German. | ||||
402-0204-00L | Elektrodynamik | 7 KP | 4V + 2U | R. Renner | |
Kurzbeschreibung | Herleitung und Diskussion der Maxwellgleichungen, vom statischen Fall zur Elektrodynamik. Wellengleichung, Wellenleiter, Kavitäten. Erzeugung elektromagnetischer Strahlung, Streuung und Beugung von Licht. Struktur der Maxwellgleichungen, Lorentz-Invarianz, Relativitätstheorie und Kovarianz, Lagrange Formulierung. Dynamik relativistischer Teilchen im Feld und deren Strahlung. | ||||
Lernziel | Physikalisches Verständnis statischer und dynamischer Phänomene (bewegter) geladener Objekte, und der Struktur der klassischen Feldtheorie der Elektrodynamik (transversale versus longitudinale Physik, Invarianzen (Lorentz-, Eich-)). Erkennen des Zusammenhangs von elektrischen, magnetischen und optischen Phänomenen und Einfluss von Medien. Verständnis klassischer Phänomene der Elektrodynamik und Fähigkeit zur selbständigen Lösung einfacher Probleme. Anwendung mathematischer Fertigkeiten (Vektoranalysis, vollständige Funktionensysteme, Green'sche Funktionen, ko- und kontravariante Koordinaten, etc.). Vorbereitung auf die Quantenmechanik (Eigenwertprobleme, Lichtleiter und Kavitäten). | ||||
Inhalt | Klassische Feldtheorie der Elektrodynamik: Herleitung und Diskussion der Maxwellgleichungen, ausgehend vom statischen Fall (Elektrostatik, Magnetostatik, Randwertprobleme) im Vakuum und in Medien und Verallgemeinerung zur Elektrodynamik (Faraday Gesetz, Ampere/Maxwell; Potentiale, Eichinvarianz). Wellengleichung und Lösungen im vollen Raum, Halbraum (Snellius Gesetz), Wellenleiter, Kavitäten. Erzeugung elektromagnetischer Strahlung, Streuung und Beugung von Licht (Optik). Erarbeitung von Beispielen. Diskussion zur Struktur der Maxwellgleichungen, Lorentz-Invarianz, Relativitätstheorie und Kovarianz, Lagrange Formulierung. Dynamik relativistischer Teilchen im Feld und deren Strahlung (Synchrotron). | ||||
Literatur | J.D. Jackson, Classical Electrodynamics W.K.H Panovsky and M. Phillis, Classical electricity and magnetism L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii, Electrodynamics of continuus media A. Sommerfeld, Elektrodynamik, Optik (Vorlesungen über theoretische Physik) M. Born and E. Wolf, Principles of optics R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures of Physics, Vol II W. Nolting, Elektrodynamik (Grundkurs Theoretische Physik 3) | ||||
402-0800-00L | The Zurich Theoretical Physics Colloquium | 0 KP | 1K | O. Zilberberg, C. Anastasiou, N. Beisert, G. Blatter, M. Gaberdiel, T. K. Gehrmann, G. M. Graf, S. Huber, P. Jetzer, L. M. Mayer, B. Moore, R. Renner, T. C. Schulthess, M. Sigrist, Uni-Dozierende | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel | |||||
Voraussetzungen / Besonderes | Vorträge evtl. auch auf Deutsch | ||||
406-0204-AAL | Electrodynamics Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 7 KP | 15R | R. Renner | |
Kurzbeschreibung | Derivation and discussion of Maxwell's equations, from the static limit to the full dynamical case. Wave equation, waveguides, cavities. Generation of electromagnetic radiation, scattering and diffraction of light. Structure of Maxwell's equations, relativity theory and covariance, Lagrangian formulation. Dynamics of relativistic particles in the presence of fields and radiation properties. | ||||
Lernziel | Develop a physical understanding for static and dynamic phenomena related to (moving) charged objects and understand the structure of the classical field theory of electrodynamics (transverse versus longitudinal physics, invariances (Lorentz-, gauge-)). Appreciate the interrelation between electric, magnetic, and optical phenomena and the influence of media. Understand a set of classic electrodynamical phenomena and develop the ability to solve simple problems independently. Apply previously learned mathematical concepts (vector analysis, complete systems of functions, Green's functions, co- and contravariant coordinates, etc.). Prepare for quantum mechanics (eigenvalue problems, wave guides and cavities). | ||||
Inhalt | Classical field theory of electrodynamics: Derivation and discussion of Maxwell equations, starting from the static limit (electrostatics, magnetostatics, boundary value problems) in the vacuum and in media and subsequent generalization to the full dynamical case (Faraday's law, Ampere/Maxwell law; potentials and gauge invariance). Wave equation and solutions in full space, half-space (Snell's law), waveguides, cavities, generation of electromagnetic radiation, scattering and diffraction of light (optics). Application to various specific examples. Discussion of the structure of Maxwell's equations, Lorentz invariance, relativity theory and covariance, Lagrangian formulation. Dynamics of relativistic particles in the presence of fields and their radiation properties (synchrotron). | ||||
Literatur | J.D. Jackson, Classical Electrodynamics W.K.H Panovsky and M. Phillis, Classical electricity and magnetism L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii, Electrodynamics of continuus media A. Sommerfeld, Electrodynamics / Optics (Lectures on Theoretical Physics) M. Born and E. Wolf, Principles of optics R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures of Physics, Vol II |