Marco Stampanoni: Catalogue data in Spring Semester 2013 |
Name | Prof. Dr. Marco Stampanoni |
Field | X-ray Imaging |
Address | Professur für Röntgenbildgebung ETH Zürich, GLC F 17.1 Gloriastrasse 37/ 39 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 86 50 |
stampanoni@biomed.ee.ethz.ch | |
Department | Information Technology and Electrical Engineering |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
227-0390-00L | Elements of Microscopy | 4 credits | 3G | M. Stampanoni, G. Csúcs, R. A. Wepf | |
Abstract | The lecture reviews the basics of microscopy by discussing wave propagation, diffraction phenomena and aberrations. It gives the basics of light microscopy, introducing fluorescence, wide-field, confocal and multiphoton imaging. It further covers 3D electron microscopy and 3D X-ray tomographic micro and nanoimaging. | ||||
Learning objective | Solid introduction to the basics of microscopy, either with visible light, electrons or X-rays. | ||||
Content | It would be impossible to imagine any scientific activities without the help of microscopy. Nowadays, scientists can count on very powerful instruments that allow investigating sample down to the atomic level. The lecture includes a general introduction to the principles of microscopy, from wave physics to image formation. It provides the physical and engineering basics to understand visible light, electron and X-ray microscopy. During selected exercises in the lab, several sophisticated instrument will be explained and their capabilities demonstrated. | ||||
Literature | Available Online. | ||||
227-0396-00L | CIMST Interdisciplinary Summer School on Bio-Medical Imaging | 3 credits | 6G | S. Kozerke, S. M. Ametamey, G. Csúcs, T. Ishikawa, P. Koumoutsakos, R. Müller, R. Schibli, M. Stampanoni, G. Székely, R. A. Wepf | |
Abstract | Two-week summer school organized by CIMST (Center for Imaging Science and Technology, University and ETH Zurich) on biological and medical imaging. The course covers X-ray imaging, magnetic resonance imaging, nuclear imaging, ultrasound imaging, infrared and optical microscopy, electron microscopy, image processing and analysis. | ||||
Learning objective | Students understand basic concepts and implementations of biological and medical imaging. Based on relative advantages and limitations of each method they can identify preferred procedures and applications. Common foundations and conceptual differences of the methods can be explained. | ||||
Content | Two-week summer school organized by CIMST (Center for Imaging Science and Technology, University and ETH Zurich) on biological and medical imaging. The course covers concepts and implementations of X-ray imaging, magnetic resonance imaging, nuclear imaging, ultrasound imaging, infrared and optical microscopy and electron microscopy. Multi-modal and multi-scale imaging and supporting technologies such as image analysis and modeling are discussed. Dedicated modules for physical and life scientists taking into account the various backgrounds are offered. | ||||
Lecture notes | Hand-outs, Web links | ||||
Prerequisites / Notice | The school admits 50 MSc or PhD students with backgrounds in biology, chemistry, mathematics, physics, computer science or engineering based on a selection process. To apply a curriculum vitae and an application letter need to be submitted. Further information can be found at: www.cimst.ethz.ch/education/summer_school. | ||||
227-0970-00L | Research Topics in Biomedical Engineering | 1 credit | 2K | K. P. Prüssmann, M. Rudin, M. Stampanoni, K. Stephan, J. Vörös | |
Abstract | Current topics in Biomedical Engineering presented mostly by external speakers from academia and industry. | ||||
Learning objective | see above |