Francesca Da Lio: Katalogdaten im Herbstsemester 2020

NameFrau Prof. Dr. Francesca Da Lio
Adresse
Dep. Mathematik
ETH Zürich, HG G 37.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 86 96
Fax+41 44 632 10 85
E-Mailfrancesca.dalio@math.ethz.ch
URLhttp://www.math.ethz.ch/~fdalio
DepartementMathematik
BeziehungTitularprofessorin

NummerTitelECTSUmfangDozierende
401-0363-10LAnalysis III Information Belegung eingeschränkt - Details anzeigen 3 KP2V + 1UF. Da Lio
KurzbeschreibungIntroduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics.
LernzielMathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations.
InhaltLaplace Transforms:
- Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
- Transforms of Derivatives and Integrals, ODEs
- Unit Step Function, t-Shifting
- Short Impulses, Dirac's Delta Function, Partial Fractions
- Convolution, Integral Equations
- Differentiation and Integration of Transforms

Fourier Series, Integrals and Transforms:
- Fourier Series
- Functions of Any Period p=2L
- Even and Odd Functions, Half-Range Expansions
- Forced Oscillations
- Approximation by Trigonometric Polynomials
- Fourier Integral
- Fourier Cosine and Sine Transform

Partial Differential Equations:
- Basic Concepts
- Modeling: Vibrating String, Wave Equation
- Solution by separation of variables; use of Fourier series
- D'Alembert Solution of Wave Equation, Characteristics
- Heat Equation: Solution by Fourier Series
- Heat Equation: Solutions by Fourier Integrals and Transforms
- Modeling Membrane: Two Dimensional Wave Equation
- Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
- Solution of PDEs by Laplace Transform
SkriptLecture notes by Prof. Dr. Alessandra Iozzi:
https://polybox.ethz.ch/index.php/s/D3K0TayQXvfpCAA
LiteraturE. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011

C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed.

S.J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Books on Mathematics, NY.

G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003.

Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005

For reference/complement of the Analysis I/II courses:

Christian Blatter: Ingenieur-Analysis
https://people.math.ethz.ch/~blatter/dlp.html
401-3420-70LTopics in Harmonic Analysis Belegung eingeschränkt - Details anzeigen
Number of participants limited to 20
4 KP2SF. Da Lio, L. Kobel-Keller
KurzbeschreibungThe aim of this seminar about harmonic analysis is to study the most important and most classical topics in that field, e.g. maximal functions, Marcinkiewicz interpolation, Fourier theory, distribution theory, singular integrals and Calderon-Zygmund theory.
After an introduction delivered by the two organisers, each week participants will give a seminar talk (usually in groups of two).
LernzielThe students will learn on one hand the most important concept in harmonic analysis and on the other hand improve their presentations skills (by delivering a seminar talk).
LiteraturThe main references are:
E. Stein: "Singular integrals and differentiability properties of functions "
E. Stein, G. Weiss: "Introduction to Fourier analysis on Euclidean spaces"
L. Grafakos: "Modern Fourier Analysis" & "Classical Fourier Analysis"
401-5350-00LAnalysis Seminar Information 0 KP1KM. Struwe, A. Carlotto, F. Da Lio, A. Figalli, N. Hungerbühler, M. Iacobelli, T. Ilmanen, L. Kobel-Keller, Uni-Dozierende
KurzbeschreibungResearch colloquium
Lernziel
406-0353-AALAnalysis III
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
4 KP9RF. Da Lio
KurzbeschreibungEinführung in die partiellen Differentialgleichungen. Klassifizieren und Lösen von in der Praxis wichtigen Differentialgleichungen. Es werden elliptische, parabolische und hyperbolische Differentialgleichungen behandelt. Folgende mathematischen Techniken werden vorgestellt: Laplacetransformation, Fourierreihen, Separation der Variablen, Methode der Charakteristiken.
LernzielMathematische Behandlung naturwissenschaftlicher Probleme lernen. Verstehen der Eigenschaften der verschiedenen Typen von partiellen Differentialgleichungen.
InhaltLaplace Transforms:
- Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
- Transforms of Derivatives and Integrals, ODEs
- Unit Step Function, t-Shifting
- Short Impulses, Dirac's Delta Function, Partial Fractions
- Convolution, Integral Equations
- Differentiation and Integration of Transforms

Fourier Series, Integrals and Transforms:
- Fourier Series
- Functions of Any Period p=2L
- Even and Odd Functions, Half-Range Expansions
- Forced Oscillations
- Approximation by Trigonometric Polynomials
- Fourier Integral
- Fourier Cosine and Sine Transform

Partial Differential Equations:
- Basic Concepts
- Modeling: Vibrating String, Wave Equation
- Solution by separation of variables; use of Fourier series
- D'Alembert Solution of Wave Equation, Characteristics
- Heat Equation: Solution by Fourier Series
- Heat Equation: Solutions by Fourier Integrals and Transforms
- Modeling Membrane: Two Dimensional Wave Equation
- Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
- Solution of PDEs by Laplace Transform
LiteraturE. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011

C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed.
Stanley J. Farlow, Partial Differential Equations for Scientists and Engineers, (Dover Books on Mathematics).

G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003.

Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005

For reference/complement of the Analysis I/II courses:

Christian Blatter: Ingenieur-Analysis (Download PDF)
Voraussetzungen / BesonderesWeitere Informationen unter:
http://www.math.ethz.ch/education/bachelor/lectures/hs2013/other/analysis3_itet
406-2284-AALMeasure and Integration
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
6 KP13RF. Da Lio
KurzbeschreibungIntroduction to the abstract measure theory and integration, including the following topics: Lebesgue measure and Lebesgue integral, Lp-spaces, convergence theorems, differentiation of measures, product measures (Fubini's theorem), abstract measures, Radon-Nikodym theorem, probabilistic language.
LernzielBasic acquaintance with the theory of measure and integration, in particular, Lebesgue's measure and integral.
Literatur1. Lecture notes by Professor Michael Struwe (http://www.math.ethz.ch/~struwe/Skripten/AnalysisIII-SS2007-18-4-08.pdf)
2. L. Evans and R.F. Gariepy "Measure theory and fine properties of functions"
3. Walter Rudin "Real and complex analysis"
4. R. Bartle The elements of Integration and Lebesgue Measure
5. P. Cannarsa & T. D'Aprile: Lecture notes on Measure Theory and Functional Analysis. http://www.mat.uniroma2.it/~cannarsa/cam_0607.pdf