Francesca Da Lio: Katalogdaten im Herbstsemester 2021 |
Name | Frau Prof. Dr. Francesca Da Lio |
Adresse | Dep. Mathematik ETH Zürich, HG G 37.2 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 86 96 |
Fax | +41 44 632 10 85 |
francesca.dalio@math.ethz.ch | |
URL | http://www.math.ethz.ch/~fdalio |
Departement | Mathematik |
Beziehung | Titularprofessorin |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-0251-00L | Mathematik I: Analysis I und Lineare Algebra | 6 KP | 4V + 2U | F. Da Lio | |
Kurzbeschreibung | Diese Vorlesung behandelt mathematische Konzepte und Methoden, die zum Modellieren, Lösen und Diskutieren wissenschaftlicher Probleme nötig sind - speziell durch gewöhnliche Differentialgleichungen. | ||||
Lernziel | Mathematik ist von immer grösserer Bedeutung in den Natur- und Ingenieurwissenschaften. Grund dafür ist das folgende Konzept zur Lösung konkreter Probleme: Der entsprechende Ausschnitt der Wirklichkeit wird in der Sprache der Mathematik modelliert; im mathematischen Modell wird das Problem - oft unter Anwendung von äusserst effizienter Software - gelöst und das Resultat in die Realität zurück übersetzt. Ziel der Vorlesungen Mathematik I und II ist es, die einschlägigen mathematischen Grundlagen bereit zu stellen. Differentialgleichungen sind das weitaus wichtigste Hilfsmittel im Prozess des Modellierens und stehen deshalb im Zentrum beider Vorlesungen. | ||||
Inhalt | 1. Differential- und Integralrechnung: Wiederholung der Ableitung, Linearisierung, Taylor-Polynome, Extremwerte, Stammfunktion, Hauptsatz der Differential- und Integralrechnung, Integrationsmethoden, uneigentliche Integrale. 2. Lineare Algebra und Komplexe Zahlen: lineare Gleichungssysteme, Gauss-Verfahren, Matrizen, Determinanten, Eigenwerte und Eigenvektoren, Darstellungsformen der komplexe Zahlen, Potenzieren, Radizieren, Fundamentalsatz der Algebra. 3. Gewöhnliche Differentialgleichungen: Separierbare Differentialgleichungen (DGL), Integration durch Substitution, Lineare DGL erster und zweiter Ordnung, homogene Systeme linearer DGL mit konstanten Koeffizienten, Einführung in die dynamischen Systeme in der Ebene. | ||||
Literatur | - Thomas, G. B., Weir, M. D. und Hass, J.: Analysis 1, Lehr- und Übungsbuch (Pearson). - Gramlich, G.: Lineare Algebra, eine Einführung (Hanser). - Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler, Bd. 1 und 2 (Vieweg+Teubner). | ||||
Voraussetzungen / Besonderes | Voraussetzungen: Vertrautheit mit den Grundlagen der Analysis, insbesondere mit dem Funktions- und Ableitungsbegriff. | ||||
401-5350-00L | Analysis Seminar ![]() | 0 KP | 1K | A. Carlotto, F. Da Lio, A. Figalli, N. Hungerbühler, M. Iacobelli, T. Ilmanen, L. Kobel-Keller, T. Rivière, J. Serra, Uni-Dozierende | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel | |||||
406-0251-AAL | Mathematics I ![]() Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 6 KP | 13R | F. Da Lio | |
Kurzbeschreibung | This course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations. | ||||
Lernziel | Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment. The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses. | ||||
Inhalt | 1. Linear Algebra and Complex Numbers: systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra. 2. Single-Variable Calculus: review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals. 3. Ordinary Differential Equations: separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems. | ||||
Literatur | - Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall). - Thomas, G. B.: Thomas' Calculus, Part 1 - Early Transcendentals (Pearson Addison-Wesley). | ||||
Voraussetzungen / Besonderes | Prerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative. Assistance: Tuesdays and Wednesdays 17-19h, in Room HG E 41. | ||||
406-2284-AAL | Measure and Integration Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 6 KP | 13R | F. Da Lio | |
Kurzbeschreibung | Introduction to the abstract measure theory and integration, including the following topics: Lebesgue measure and Lebesgue integral, Lp-spaces, convergence theorems, differentiation of measures, product measures (Fubini's theorem), abstract measures, Radon-Nikodym theorem, probabilistic language. | ||||
Lernziel | Basic acquaintance with the theory of measure and integration, in particular, Lebesgue's measure and integral. | ||||
Literatur | 1. Lecture notes by Professor Michael Struwe (http://www.math.ethz.ch/~struwe/Skripten/AnalysisIII-SS2007-18-4-08.pdf) 2. L. Evans and R.F. Gariepy "Measure theory and fine properties of functions" 3. Walter Rudin "Real and complex analysis" 4. R. Bartle The elements of Integration and Lebesgue Measure 5. P. Cannarsa & T. D'Aprile: Lecture notes on Measure Theory and Functional Analysis. http://www.mat.uniroma2.it/~cannarsa/cam_0607.pdf |