Francesca Da Lio: Katalogdaten im Frühjahrssemester 2020

NameFrau Prof. Dr. Francesca Da Lio
Adresse
Dep. Mathematik
ETH Zürich, HG G 37.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 86 96
Fax+41 44 632 10 85
E-Mailfrancesca.dalio@math.ethz.ch
URLhttp://www.math.ethz.ch/~fdalio
DepartementMathematik
BeziehungTitularprofessorin

NummerTitelECTSUmfangDozierende
401-2284-00LMass und Integral Information 6 KP3V + 2UF. Da Lio
KurzbeschreibungAbstrakte Mass- und Integrationstheorie, inklusive: Satz von Caratheodory, Lebesgue-Mass, Konvergenzsätze, L^p-Räume, Satz von Radon-Nikodym, Produktmasse und Satz von Fubini, Masse auf topologischen Räumen
LernzielGrundlagen der abstrakten Mass- und Integrationstheorie
InhaltAbstrakte Mass- und Integrationstheorie, inklusive: Satz von Caratheodory, Lebesgue-Mass, Konvergenzsätze, L^p-Räume, Satz von Radon-Nikodym, Produktmasse und Satz von Fubini, Masse auf topologischen Räumen
SkriptNew lecture notes in English will be made available during the course
Literatur1. L. Evans and R.F. Gariepy " Measure theory and fine properties of functions"
2. Walter Rudin "Real and complex analysis"
3. R. Bartle The elements of Integration and Lebesgue Measure
4. Das Skript von Prof. Michael Struwe FS 2013, https://people.math.ethz.ch/~struwe/Skripten/AnalysisIII-FS2013-12-9-13.pdf.
5. Das Skript von Prof. Urs Lang FS 2019, https://people.math.ethz.ch/~lang/mi.pdf
6. P. Cannarsa & T. D'Aprile: Lecture notes on Measure Theory and Functional Analysis: http://www.mat.uniroma2.it/~cannarsa/cam_0607.pdf
.
401-5350-00LAnalysis Seminar Information 0 KP1KM. Struwe, A. Carlotto, F. Da Lio, A. Figalli, N. Hungerbühler, M. Iacobelli, L. Kobel-Keller, T. Rivière, Uni-Dozierende
KurzbeschreibungForschungskolloquium
Lernziel
InhaltResearch seminar in Analysis
406-0353-AALAnalysis III
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
4 KP9RF. Da Lio
KurzbeschreibungThe focus lies on the simplest cases of three fundamental types of partial differential equations of second order: the Laplace equation, the heat equation and the wave equation.
Lernziel
LiteraturReference books and notes

Main books:

Giovanni Felder: "Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure" (Download PDF: http://www.math.ethz.ch/u/felder/Teaching/Partielle_Differenzialgleichungen ),
Erwin Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, just chapters 11, 16.


Extra readings:

Norbert Hungerbühler: "Einführung in die partiellen Differentialgleichungen", vdf Hochschulverlag AG an der ETH Zürich,
Yehuda Pinchover, Jacob Rubinstein: "Partial Differential Equations", Cambridge University Press 2005.


For reference/complement of the Analysis I/II courses:

Christian Blatter: Ingenieur-Analysis (Download PDF)
Voraussetzungen / BesonderesThe precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.
406-2284-AALMeasure and Integration
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
6 KP13RF. Da Lio
KurzbeschreibungIntroduction to abstract measure and integration theory, including the following topics: Caratheodory extension theorem, Lebesgue measure, convergence theorems, L^p-spaces, Radon-Nikodym theorem, product measures and Fubini's theorem, measures on topological spaces
LernzielBasic acquaintance with the abstract theory of measure and integration
InhaltIntroduction to abstract measure and integration theory, including the following topics: Caratheodory extension theorem, Lebesgue measure, convergence theorems, L^p-spaces, Radon-Nikodym theorem, product measures and Fubini's theorem, measures on topological spaces
Skriptno lecture notes
Literatur1. P.R. Halmos, "Measure Theory", Springer
2. Extra material: Lecture Notes by Emmanuel Kowalski and Josef Teichmann from spring semester 2012, http://www.math.ethz.ch/~jteichma/measure-integral_120615.pdf
3. Extra material: P. Cannarsa & T. D'Aprile, "Lecture Notes on Measure Theory and Functional Analysis", http://www.mat.uniroma2.it/~cannarsa/cam_0607.pdf
Voraussetzungen / BesonderesThe precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.