Name | Herr Dr. Falk Wittel |
Namensvarianten | Falk K. Wittel |
Adresse | Institut für Baustoffe (IfB) ETH Zürich, HIF E 27 Laura-Hezner-Weg 7 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 28 71 |
fwittel@ethz.ch | |
Departement | Bau, Umwelt und Geomatik |
Beziehung | Dozent |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
101-0615-00L | Werkstoffe III Nur für Bauingenieur BSc Regl. 2010 Wird zum letzten Mal im HS16 angeboten. | 5 KP | 4P | R. J. Flatt, I. Burgert, P. Lura, H. Richner, F. Wittel | |
Kurzbeschreibung | Vermittlung von grundlegendem und praxisbezogenem Wissen über wichtige Baustoffe und Untersuchungsverfahren. | ||||
Lernziel | Vermittlung von grundlegendem und praxisbezogenem Wissen über wichtige Baustoffe und Untersuchungsverfahren. | ||||
Inhalt | o Vorstellung der Materialprüfmaschinen und Durchführung verschiedener Prüfverfahren an metallischen Werkstoffen (Zugversuch, Härteprüfung, Biegeprüfung und Kerbschlagprüfung). o Theoretische und praktische Behandlung von Aspekten der Betontechnologie wie: Mischungsentwurf, Herstellung , Einbau sowie Prüfung des Betons auf seine mechanischen Eigenschaften. o Eigenschaften der Steine und Mörtel in einem Mauerwerk und deren Zusammenwirken. Parameter wie Druckfestigkeit, E-Modul, Wasseraufnahme, Wärmeleitfähigkeit von Mauerwerk werden vorgestellt sowie Hinweise zur konstruktiven Gestaltung gegeben. o Besonderheiten des Werkstoffes Holz werden aufgezeigt: Anisotropie, Hygroskopizität, Schwinden und Quellen, Einfluss der Dimension auf die Festigkeitseigenschaften. Verschiedene Prüfmethoden an Holz werden erklärt und praktische Versuche durchgeführt. o Die Grundlagen der Raster-Elektronenmikroskopie werden in praktischen Übungen mit dem ESEM (Atmosphärisches Raster-Elektronenmikroskop) vermittelt. o Ein erster Einblick in die Grundlagen und Anwendung der Finite Elemente Methode wird in praktischen Übungen vermittelt. o Die Thematik der Dauerhaftigkeit eines Bauwerks wird behandelt. Eingehend wird die Potentialmessung zur Detektierung und Ortung der Korrosion von Stahl in Beton theoretisch und praktisch behandelt. | ||||
Skript | Zu jedem Thema wird ein Skript abgegeben. Download auf der Vorlesungsseite unter www.ifb.ethz.ch/education | ||||
101-0615-01L | Werkstoffe III | 4 KP | 4P | R. J. Flatt, I. Burgert, P. Lura, H. Richner, F. Wittel | |
Kurzbeschreibung | Vermittlung von grundlegendem und praxisbezogenem Wissen über wichtige Baustoffe und Untersuchungsverfahren. | ||||
Lernziel | Vermittlung von grundlegendem und praxisbezogenem Wissen über wichtige Baustoffe und Untersuchungsverfahren. | ||||
Inhalt | o Vorstellung der Materialprüfmaschinen und Durchführung verschiedener Prüfverfahren an metallischen Werkstoffen (Zugversuch, Härteprüfung, Biegeprüfung und Kerbschlagprüfung). o Theoretische und praktische Behandlung von Aspekten der Betontechnologie wie: Mischungsentwurf, Herstellung , Einbau sowie Prüfung des Betons auf seine mechanischen Eigenschaften. o Eigenschaften der Steine und Mörtel in einem Mauerwerk und deren Zusammenwirken. Parameter wie Druckfestigkeit, E-Modul, Wasseraufnahme, Wärmeleitfähigkeit von Mauerwerk werden vorgestellt sowie Hinweise zur konstruktiven Gestaltung gegeben. o Besonderheiten des Werkstoffes Holz werden aufgezeigt: Anisotropie, Hygroskopizität, Schwinden und Quellen, Einfluss der Dimension auf die Festigkeitseigenschaften. Verschiedene Prüfmethoden an Holz werden erklärt und praktische Versuche durchgeführt. o Die Grundlagen der Raster-Elektronenmikroskopie werden in praktischen Übungen mit dem ESEM (Atmosphärisches Raster-Elektronenmikroskop) vermittelt. o Ein erster Einblick in die Grundlagen und Anwendung der Finite Elemente Methode wird in praktischen Übungen vermittelt. o Die Thematik der Dauerhaftigkeit eines Bauwerks wird behandelt. Eingehend wird die Potentialmessung zur Detektierung und Ortung der Korrosion von Stahl in Beton theoretisch und praktisch behandelt. | ||||
Skript | Zu jedem Thema wird ein Skript abgegeben. Download auf der Vorlesungsseite unter www.ifb.ethz.ch/education | ||||
101-0617-00L | Materials IV | 3 KP | 2G | H. J. Herrmann, I. Burgert, R. J. Flatt, F. Wittel | |
Kurzbeschreibung | This lecture is focused on current issues of materials research from various fields. It provides an overview on various directions of research on civil engineering materials and is intended to simplify the further choice of courses. | ||||
Lernziel | Based on the bachelor courses „Materials I-III“, current, fundamental, and important issues of specific building materials are addressed. Next to aspects of material production, usage and properties, their interaction with the environment e.g. by durability and environmental impact are addressed. This course is intended to simplify the further selection of courses. | ||||
Inhalt | The lecture is segmented into 13 important problems, namely: 1. Materials, Structures, and Sustainability 2. Granular matter: (DEM) 3. Fracture mechanics and size effects in concrete 4. Cyclic failure of asphalt (Fatigue) 5. Mechanics and failure of fiber reinforces materials 6. Wood: from the tree to the beam (multi scale approaches) 7. Transport and degradation in porous building materials 8. Rheology 9. Plasticity 10. Foam (e.g. polymers) 11. Gluing and coating (surfaces) 12. Asbestos, nano particles and hazardous substances 13. Biomimetics in Constructions | ||||
Skript | download from www.ifb.ethz.ch/education | ||||
Literatur | download from www.ifb.ethz.ch/education | ||||
Voraussetzungen / Besonderes | The lecture will be given in english. | ||||
101-0619-00L | Mechanics of Building Materials | 3 KP | 2G | F. Wittel | |
Kurzbeschreibung | Material models comprise our knowledge on the physical behavior of materials. Based on a short introduction to solid mechanics, 3D material laws for elastic, visco-elastic behavior, plasticity and damage mechanics are discussed. We focus on material laws for concrete, metals, wood and other composites, how to obtain parameters from mechanical tests and their application in FEM calculations. | ||||
Lernziel | This introductory course aims to bridge the gap between phenomenological, qualitative comprehension of processes in building materials, their characterization in mechanical testing and the ability to apply those for practical design purposes via constitutive models. Upon completion of the course you should be able to: - classify different material behavior (e.g. linear/non-linear elastic, elasto-plastic, creep) with respect to types of constitutive material models (total /incremental strain models, damage / plasticity models, linear visco-elasticity), - review how incremental strain models (e.g. elasto-plastic) are algorithmically implemented in Finite Element software (UMat of Abaqus), - formulate the main approach and assumptions to the most import models for building materials and discuss their limitations, - propose experimental campaigns for obtaining relevant material parameters for non-linear material models. | ||||
Inhalt | - Introduction to constitutive models for materials - Fundaments of mechanics of materials - Cauchy-, hyper- and hypoelastic material descriptions - Constitutive Models for Concrete (non-linear elastic) - Introduction to metall and concrete plasticity - Introduction to ABAQUS UMAT Programming - Damage continuum mechanics - Linear visco-elastic materials | ||||
Skript | Will be provided during the lecture. | ||||
101-0639-01L | Science and Engineering of Glass and Natural Stone in Construction Findet dieses Semester nicht statt. | 3 KP | 2G | F. Wittel, T. Wangler | |
Kurzbeschreibung | The course offers an overview of relevant practical issues and present technological challenges for glass and natural stones in constructions. Students gain a good knowledge of the basics of glasses and natural stones, their potential as engineering materials and learn to apply them in the design of civil engineering constructions and to evaluate concepts. | ||||
Lernziel | Glass is increasingly used in constructions to ease the construction process, as functional insulation barrier, even for structural applications of impressive size. While everyone has experienced the innovation potential of glass in the last decade, products from natural stone suffer from an unjustified traditional image that often originates from a lack of understanding of the material and its combination with other materials. Culturally important structures often are made from natural stone and their conservation demands an understanding of their deterioration mechanisms, the concepts of which can be applied to other civil engineering materials. Designers and engineers need the knowledge to reconcile materials and system behavior with the entire processing, handling, integration and life time in mind. In this module students are provided with a broad fundamental as well as practice-oriented education on glass and natural stone in civil engineering applications. Present and future construction and building concepts demand for such materials with optimized properties. Based on the fundamentals from the Bachelor course in materials by the end of this module, you should be able to: -recognize and choose specific applications from the broad overview you were provided with, -relate processing technologies to typical products and building applications and recognize (and explain typical damage related to wrong material choice or application, -explain the nature of glassy and crystalline materials and interpret their physical behavior against this background, -explain the major deterioration mechanisms in natural stone and how this relates to durability, -analyze material combinations and appraise their application in future products as well as integration in existing constructions, - summarize with appropriate guidance publications on a related topic in an oral presentation and short report. | ||||
Inhalt | Lecture 1: An introduction to science and engineering of glass and natural stone in construction (FW/TW) Lecture 2: Glass chemistry including historical development of glass composition, use of raw materials, melts, chemical stability and corrosion. (FW) Lecture 3: Geology and mineralogy of stones used in construction. Formation processes, chemistry, crystal structure. (TW) Lecture 4: Microscopic models for glassy materials. Physics of glass transition. From microscopic physical models to thermodynamics, rheology and mechanics of glassy materials. (FW) Lecture 5: Stone properties and behavior: microstructure, density, porosity, mechanical properties (TW) Lecture 6: Glass physics: Optical properties (transmission, reflection, emission, refraction, polarization and birefringence, testing methods); Mechanical properties (density, thermal, mechanical, electric properties, glass testing) (FW) Lecture 7: Stone properties and durability: transport, moisture and thermal cycling (TW) Lecture 8: Forming and processing of glass: (plate and molded glass, drawing, slumping, profiling etc.; Processing: Cutting, mechanical processing, tempering, gluing, bending, laminating of glass Surface treatments: coating, sputtering, enameling, printing, etching, chemical pre-stressing.) (FW) Lecture 9: Durability: Salt crystallization, freezing, biodeterioration (TW) Lecture 10: Glass products for civil engineering applications: (Molded glasses, fiber glass, foam glass, plate glass); construction glass (insulation glass, structural glass, protective glass, intelligent glass, codes); (FW) Lecture 11: Conservation: Consolidation, cleaning, and other treatments (TW). Practical aspects (guest lecturer) Lecture 12: Glass in constructions. (modelling, application and regulation, typical damage in glass) (FW) Lecture 13: Student presentations; exam questions (FW/TW) | ||||
Skript | Will be handed out in the lectures | ||||
Literatur | Werkstoffe II script (download via the IFB homepage). Rest will be handed out in the lectures | ||||
Voraussetzungen / Besonderes | Werkstoffe I/II of the bachelor studies or equivalent introductory materials lecture. |