Reto Knutti: Catalogue data in Autumn Semester 2020

Name Prof. Dr. Reto Knutti
FieldClimate Physics
Address
Institut für Atmosphäre und Klima
ETH Zürich, CHN N 12.1
Universitätstrasse 16
8092 Zürich
SWITZERLAND
Telephone+41 44 632 35 40
E-mailreto.knutti@env.ethz.ch
URLhttp://www.iac.ethz.ch/people/knuttir
DepartmentEnvironmental Systems Science
RelationshipFull Professor

NumberTitleECTSHoursLecturers
061-0101-00LClimate / Water / Soil Information Restricted registration - show details
Only for Landscape Architecture MSc.
Course languages are English and German.
2 credits3GH. Joos, R. Kretzschmar, R. Weingartner, N. Bluvshtein, E. L. Davin, S. Dötterl, A. Frossard, T. Galí-Izard, R. Knutti, P. U. Lehmann Grunder, T. Peter, S. Schemm, J. Schwaab, C. Steger, H. Wernli
AbstractLectures, exercises and excursions serve as an introduction to atmospheric sciences, hydrology and soil science. Students gain a broad vision of the cutting edge topics that are being researched and studied at the Department of Environmental Systems Science at ETH, Eawag, WSL a.o. This will be the base for a future dialog between the field of landscape architecture and the field of sciences.
ObjectiveStudents acquire basic knowledge in atmospheric sciences, hydrology and soil science:
- Understanding basic chemical and physical processes in the atmosphere that influence weather and climate
- Knowledge of water balance, principles of integral water management and climatic factors in the field of hydrology
- Fundamentals about the classification of soils, soil-forming processes, physical and chemical soil properties, soil biology and ecology, soil degradation and protection

Students develop an understanding of the relevance of these topics in the field of landscape architecture. Temporal and physical scale, research methods, units of measurement, lexicon, modes of representation and critical literature form the framework for the joint discourse. Students will develop a graphic language in order to integrate this knowledge into design.
ContentThe course unit consists of the three courses "Climate", "Water" and "Soil", which are organized in modules.

Module 1 “Climate”, 14.–18.09.2020
- Atmospheric dynamics: weather conditions, precipitation formation, weather forecast
- Climate physics: past and future changes in global climate and scenarios for Switzerland
- Land-climate dynamics: interaction between the land surface and the climate system
- Hydrology and water cycle: extreme precipitation, influence of climate change on the cryosphere
- Atmospheric chemistry: aerosols, greenhouse gases, air pollution

Module 2 “Water”, 21.–25.09.2020
- Water balance: theoretical fundamentals; water balance; central importance of runoff; blue, green and grey water
- Water as a resource: Switzerland's water resources, water supply, hydropower use
- Water as a hazard and risk: floods, flood protection, urban drainage
- Water protection: qualitative and quantitative water protection, water and landscape
- Water and climate change: basics, situation in Switzerland with focus on the Alpine region

Module 3 “Soil”, 28.09.–2.10.20
- Introduction to soils: definition, function, formation, classification and mapping
- Soil physics: soil texture, soil structure, soil water potentials, hydraulic conductivity
- Soil chemistry and fertility: clay minerals and oxides, cation exange capacity, soil pH, essential plant nutrients
- Soil biology and ecology: soil fauna and microflora, fungi, bacteria, food web, organic matter
- Soil degradation and threats to soil resources: erosion, compactation, sealing, contamination, salinization
- Practical aspects of soil protection
Lecture notesCourse material will be provided.
LiteratureThe course material includes a reading list.
Prerequisites / NoticeThe courses "Climate", "Water" and "Soil" are organized with the Fundamental Studio I as joint one-week modules. The weekly schedules will be provided with the course materials.

Module 1 "Climate", 14-18.09.2020
Module 2 "Water", 21-25.09.2020
Module 3 "Soil", 28.09.-2.10.20

- The courses are held in English or German.
- The written session examination covers all three courses "Climate", "Water" and "Soil".
- During the excursions there will be at least one external overnight stay.
651-4095-01LColloquium Atmosphere and Climate 1 Restricted registration - show details 1 credit1KH. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Knutti, U. Lohmann, T. Peter, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
ObjectiveThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
651-4095-02LColloquium Atmosphere and Climate 2 Restricted registration - show details 1 credit1KH. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Knutti, U. Lohmann, T. Peter, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
ObjectiveThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
651-4095-03LColloquium Atmosphere and Climate 3 Restricted registration - show details 1 credit1KH. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Knutti, U. Lohmann, T. Peter, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
ObjectiveThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
701-0071-AALMathematics III: Systems Analysis Restricted registration - show details
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
4 credits9RR. Knutti, H. Wernli
AbstractThe objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.
ObjectiveLearning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.
ContentIntroduction to principles of models; one-dimensional linear box models; multi-dimensional linear box models; nonlinear box models; models in space and time
Lecture notesTeaching material: book (see literature).
LiteratureImboden, D.S. and S. Pfenninger (2013) Introduction to Systems Analysis: Mathematically Modeling Natural Systems. Berlin Heidelberg: Springer Verlag.

http://link.springer.com/book/10.1007%2F978-3-642-30639-6
701-0071-00LMathematics III: Systems Analysis4 credits2V + 1UR. Knutti, I. Medhaug, L. Brunner, S. Schemm, H. Wernli
AbstractThe objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.
ObjectiveLearning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.
Contenthttps://iac.ethz.ch/edu/courses/bachelor/vorbereitung/systemanalyse.html
Lecture notesOverhead slides will be made available through the course website.
LiteratureImboden, D.S. and S. Pfenninger (2013) Introduction to Systems Analysis: Mathematically Modeling Natural Systems. Berlin Heidelberg: Springer Verlag.

http://link.springer.com/book/10.1007%2F978-3-642-30639-6
701-0459-00LSeminar for Bachelor Students: Atmosphere and Climate Information 3 credits2SR. Knutti, H. Joos, O. Stebler
AbstractIn this seminar all students in the realm of atmospheric and climate science from D-USYS and D-ERDW convene. Every participant gives a presentation about a scientific publication. The publications are selected by the research groups of the Institute for Atmospheric and Climate Science (IAC). Thus, the students gain detailed insight into the research at IAC.
ObjectiveIn this seminar all students in the realm of atmospheric and climate science from D-USYS and D-ERDW convene. By means of classical and modern scientific articles it is trained to extract the scientific key points of the publication, to put them into context and critically discuss the results and present them in talks and posters.
Content1st week: course organisation and presentation of the institute and the research groups
2nd and 3rd week: introduction to oral presentation techniques
4th week: Workshop "Ask questions"
week 5 to 13: students talks
14th week: concluding poster presentation
Lecture notesDocuments are offered via the course's web page.
LiteratureDocuments are offered via the course's web page.
Prerequisites / NoticeThis course can only be offered to a limited number of students, however, in any case for everybody having to attend it compulsory. We beg you to sign in to this course early.
701-0901-00LETH Week 2020: Health for Tomorrow Restricted registration - show details
Does not take place this semester.
This lecture is cancelled for 2020. If possible the lecture will be conducted in Autumn Semester 2021.
1 credit3SS. Brusoni, A. Burden, R. Knutti, I. Mansuy, K. Stephan, A. Vaterlaus, E. Vayena
AbstractETH Week is an innovative one-week course designed to foster critical thinking and creative learning. Students from all departments as well as professors and external experts will work together in interdisciplinary teams. They will develop interventions that could play a role in solving some of our most pressing global challenges. In 2020, ETH Week will focus on the topic of health and well-being.
Objective- Domain specific knowledge: Students have immersed knowledge about a certain complex, societal topic which will be selected every year. They understand the complex system context of the current topic, by comprehending its scientific, technical, political, social, ecological and economic perspectives.

- Analytical skills: The ETH Week participants are able to structure complex problems systematically using selected methods. They are able to acquire further knowledge and to critically analyse the knowledge in interdisciplinary groups and with experts and the help of team tutors.

- Design skills: The students are able to use their knowledge and skills to develop concrete approaches for problem solving and decision making to a selected problem statement, critically reflect these approaches, assess their feasibility, to transfer them into a concrete form (physical model, prototypes, strategy paper, etc.) and to present this work in a creative way (role-plays, videos, exhibitions, etc.).

- Self-competence: The students are able to plan their work effectively, efficiently and autonomously. By considering approaches from different disciplines they are able to make a judgment and form a personal opinion. In exchange with non-academic partners from business, politics, administration, nongovernmental organisations and media they are able to communicate appropriately, present their results professionally and creatively and convince a critical audience.

- Social competence: The students are able to work in multidisciplinary teams, i.e. they can reflect critically their own discipline, debate with students from other disciplines and experts in a critical-constructive and respectful way and can relate their own positions to different intellectual approaches. They can assess how far they are able to actively make a contribution to society by using their personal and professional talents and skills and as "Change Agents".
ContentThe week is mainly about problem solving and design thinking applied to the complex world of health and well-being. During ETH Week students will have the opportunity to work in small interdisciplinary groups, allowing them to critically analyse both their own approaches and those of other disciplines, and to integrate these into their work.

While deepening their knowledge about health and well-being, students will be introduced to various methods and tools for generating creative ideas and understand how different people are affected by each part of the system. In addition to lectures and literature, students will acquire knowledge via excursions into the real world, empirical observations, and conversations with researchers and experts.

A key attribute of the ETH Week is that students are expected to find their own problem, rather than just solve the problem that has been handed to them.

Therefore, the first three days of the week will concentrate on identifying a problem the individual teams will work on, while the last two days are focused on generating solutions and communicating the team's ideas.
Prerequisites / NoticeNo prerequisites. Programme is open to Bachelor and Masters from all ETH Departments. All students must apply through a competitive application process at www.ethz.ch/ethweek. Participation is subject to successful selection through this competitive process.
701-1211-01LMaster's Seminar: Atmosphere and Climate 1 Restricted registration - show details 3 credits2SH. Joos, R. Knutti, I. Medhaug, M. A. Wüest
AbstractIn this seminar, the process of writing a scientific proposal will be
introduced. The essential elements of a proposal, including the peer
review process, will be outlined and class exercises will train
scientific writing skills. Knowledge exchange between class
participants is promoted through the preparation of a master thesis
proposal and evaluation of each other's work.
ObjectiveTraining scientific writing skills.
ContentIn this seminar, the process of writing a scientific proposal will be
introduced. The essential elements of a proposal, including the peer
review process, will be outlined and class exercises will train
scientific writing skills. Knowledge exchange between class
participants is promoted through the preparation of a master thesis
proposal and evaluation of each other's work.
Lecture noteshttps://iac.ethz.ch/edu/courses/master/obligatory-courses/seminar.html
Prerequisites / NoticeAttendance is mandatory.
701-1211-02LMaster's Seminar: Atmosphere and Climate 2 Restricted registration - show details 3 credits2SH. Joos, R. Knutti, I. Medhaug, M. A. Wüest
AbstractIn this seminar scientific project management is introduced and applied to your master project. The course concludes with a presentation of your project including an overview of the science and a discussion of project management techniques applied to your thesis project.
ObjectiveApply scientific project management techniques to your master project.
ContentIn this seminar scientific project management is introduced and applied to your master project. The course concludes with a presentation of your project including an overview of the science and a discussion of project management techniques applied to your thesis project.
Prerequisites / NoticeAttendance is mandatory.