Jérôme Faist: Catalogue data in Spring Semester 2018

Name Prof. Dr. Jérôme Faist
FieldExperimentalphysik
Address
Institut für Quantenelektronik
ETH Zürich, HPT F 5
Auguste-Piccard-Hof 1
8093 Zürich
SWITZERLAND
Telephone+41 44 633 72 80
E-mailjfaist@ethz.ch
DepartmentPhysics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
402-0101-00LThe Zurich Physics Colloquium Information 0 credits1KR. Renner, G. Aeppli, C. Anastasiou, N. Beisert, G. Blatter, S. Cantalupo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, M. Gaberdiel, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, B. Moore, D. Pescia, A. Refregier, A. Rubbia, K. Schawinski, T. C. Schulthess, M. Sigrist, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev, O. Zilberberg
AbstractResearch colloquium
Objective
Prerequisites / NoticeOccasionally, talks may be delivered in German.
402-0275-00LQuantum Electronics10 credits3V + 2UJ. Faist
AbstractClassical and semi-classical introduction to Quantum Electronics. Mandatory for further elective courses in Quantum Electronics. The field of Quantum Electronics describes propagation of light and its interaction with matter. The emphasis is set on linear pulse and beam propagation in dispersive media, optical anisotropic materials, and waveguides and lasers.
ObjectiveTeach the fundamental building blocks of Quantum Electronics. After taking this course students will be able to describe light propagation in dispersive and nonlinear media, as well as the operation of polarization optics and lasers.
ContentPropagation of light in dispersive media
Light propagation through interfaces
Interference and coherence
Interferometry
Fourier Optics
Beam propagation
Optical resonators
Laser fundamentals
Polarization optics
Waveguides
Nonlinear optics
Lecture notesScripts will be distributed in class (online) via moodle
LiteratureReference:
Saleh, B.E.A., Teich, M.C.; Fundamentals of Photonics, John Wiley & Sons, Inc., newest edition
Prerequisites / NoticeMandatory lecture for physics students

Prerequisites (minimal): vector analysis, differential equations, Fourier transformation
402-0470-17LOptical Frequency Combs: Physics and Applications
Does not take place this semester.
6 credits2V + 1UJ. Faist
AbstractIn this lecture, the goal is to review the physics behind mode-locking in these various devices, as well as discuss the most important novelties and applications of the newly developed sources.
ObjectiveIn this lecture, the goal is to review the physics behind mode-locking in these various devices, as well as discuss the most important novelties and applications of the newly developed sources.
ContentSince their invention, the optical frequency combs have shown to be a key technological tool with applications in a variety of fields ranging from astronomy, metrology, spectroscopy and telecommunications. Concomitant with this expansion of the application domains, the range of technologies that have been used to generate optical frequency combs has recently widened to include, beyond the solid-state and fiber mode-locked lasers, optical parametric oscillators, microresonators and quantum cascade lasers.
In this lecture, the goal is to review the physics behind mode-locking in these various devices, as well as discuss the most important novelties and applications of the newly developed sources.

Chapt 1: Fundamentals of optical frequency comb generation
- Physics of mode-locking: time domain picture
Propagation and stability of a pulse, soliton formation
- Dispersion compensation
Solid-state and fiber mode-locked laser
Chapt 2: Direct generation
Microresonator combs: Lugiato-Lefever equation, solitons
Quantum cascade laser: Frequency domain picture of the mode-locking
Mid-infrared and terahertz QCL combs
Chapt 3: Non-linear optics
DFG, OPOs
Chapt 4: Comb diagnostics and noise
Jitter, linewidth
Chapt 5: Self-referenced combs and their applications
Chapt 6: Dual combs and their applications to spectroscopy
402-0551-00LLaser Seminar0 credits1ST. Esslinger, J. Faist, J. Home, A. Imamoglu, U. Keller, F. Merkt, H. J. Wörner
AbstractResearch colloquium
Objective