Jérôme Faist: Katalogdaten im Frühjahrssemester 2018 |
Name | Herr Prof. Dr. Jérôme Faist |
Lehrgebiet | Experimentalphysik |
Adresse | Institut für Quantenelektronik ETH Zürich, HPT F 5 Auguste-Piccard-Hof 1 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 72 80 |
jfaist@ethz.ch | |
Departement | Physik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
402-0101-00L | The Zurich Physics Colloquium | 0 KP | 1K | R. Renner, G. Aeppli, C. Anastasiou, N. Beisert, G. Blatter, S. Cantalupo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, M. Gaberdiel, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, B. Moore, D. Pescia, A. Refregier, A. Rubbia, K. Schawinski, T. C. Schulthess, M. Sigrist, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev, O. Zilberberg | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel | |||||
Voraussetzungen / Besonderes | Occasionally, talks may be delivered in German. | ||||
402-0275-00L | Quantenelektronik | 10 KP | 3V + 2U | J. Faist | |
Kurzbeschreibung | Classical and semi-classical introduction to Quantum Electronics. Mandatory for further elective courses in Quantum Electronics. The field of Quantum Electronics describes propagation of light and its interaction with matter. The emphasis is set on linear pulse and beam propagation in dispersive media, optical anisotropic materials, and waveguides and lasers. | ||||
Lernziel | Teach the fundamental building blocks of Quantum Electronics. After taking this course students will be able to describe light propagation in dispersive and nonlinear media, as well as the operation of polarization optics and lasers. | ||||
Inhalt | Propagation of light in dispersive media Light propagation through interfaces Interference and coherence Interferometry Fourier Optics Beam propagation Optical resonators Laser fundamentals Polarization optics Waveguides Nonlinear optics | ||||
Skript | Scripts will be distributed in class (online) via moodle | ||||
Literatur | Reference: Saleh, B.E.A., Teich, M.C.; Fundamentals of Photonics, John Wiley & Sons, Inc., newest edition | ||||
Voraussetzungen / Besonderes | Mandatory lecture for physics students Prerequisites (minimal): vector analysis, differential equations, Fourier transformation | ||||
402-0470-17L | Optical Frequency Combs: Physics and Applications Findet dieses Semester nicht statt. | 6 KP | 2V + 1U | J. Faist | |
Kurzbeschreibung | In this lecture, the goal is to review the physics behind mode-locking in these various devices, as well as discuss the most important novelties and applications of the newly developed sources. | ||||
Lernziel | In this lecture, the goal is to review the physics behind mode-locking in these various devices, as well as discuss the most important novelties and applications of the newly developed sources. | ||||
Inhalt | Since their invention, the optical frequency combs have shown to be a key technological tool with applications in a variety of fields ranging from astronomy, metrology, spectroscopy and telecommunications. Concomitant with this expansion of the application domains, the range of technologies that have been used to generate optical frequency combs has recently widened to include, beyond the solid-state and fiber mode-locked lasers, optical parametric oscillators, microresonators and quantum cascade lasers. In this lecture, the goal is to review the physics behind mode-locking in these various devices, as well as discuss the most important novelties and applications of the newly developed sources. Chapt 1: Fundamentals of optical frequency comb generation - Physics of mode-locking: time domain picture Propagation and stability of a pulse, soliton formation - Dispersion compensation Solid-state and fiber mode-locked laser Chapt 2: Direct generation Microresonator combs: Lugiato-Lefever equation, solitons Quantum cascade laser: Frequency domain picture of the mode-locking Mid-infrared and terahertz QCL combs Chapt 3: Non-linear optics DFG, OPOs Chapt 4: Comb diagnostics and noise Jitter, linewidth Chapt 5: Self-referenced combs and their applications Chapt 6: Dual combs and their applications to spectroscopy | ||||
402-0551-00L | Laser Seminar | 0 KP | 1S | T. Esslinger, J. Faist, J. Home, A. Imamoglu, U. Keller, F. Merkt, H. J. Wörner | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel |