Patrick Christoph Brunner: Katalogdaten im Frühjahrssemester 2018

NameHerr Dr. Patrick Christoph Brunner

701-1426-00LAdvanced Evolutionary Genetics3 KP4GT. Städler, P. C. Brunner
KurzbeschreibungThe field of evolutionary genetics rests on genetic and evolutionary principles, (often) mathematical models, and molecular data. The explosion in the availability of genome-wide data makes competencies in "making sense" of such data more and more relevant. This course will cover selected topics that are both fundamental and/or currently very active research fields.
LernzielThis course deals with (some of) the conceptual foundations of evolutionary genetics in the age of genomics, going well beyond the introductory material that is part of the BSc curriculum. The principal aim is for students to gain a thorough appreciation for the underlying ideas and models of key evolutionary processes, and to witness how these are being tested and refined vis-à-vis the recent deluge of genome-wide sequence data. The course focuses on theoretical concepts and ways to infer the action of evolutionary processes from molecular data; as such it is also designed to facilitate understanding of the burgeoning scientific literature in molecular ecology and evolution. These aims require students to be actively engaged in reading original papers, discussing ideas and data among themselves, and presenting their interpretations in group talks.
InhaltThere are 4 hours of lectures, student presentations, and/or group work per week. Students are expected to spend 4 additional hours per week on preparatory study for the following week. Every week, one subject will be presented and overseen by one of the two lecturers.

Each weekly topic will be introduced by a lecture (max. 2 x 45 minutes), highlighting key concepts and historically important papers. The (slight) majority of the time will be spent with group presentations based on recent important papers, and discussions of the relevant concepts.

Specific proposed topics (subject to change):
(1) The coalescent in structured populations (e.g. spatial sampling and its genealogical consequences, demographic inference from sequence data, spurious bottlenecks).
(2) Population subdivision: evolutionary processes and measures (e.g. spatial models, absolute and relative measures of divergence, Jost's (2008) fundamental insights and their reception).
(3) Speciation genetics and modes of species divergence (e.g. intrinsic postzygotic barriers, Dobzhansky-Muller incompatibilities, snowball effect, genomic islands of divergence).
(4) The interplay of linkage, recombination, and selection (e.g. selective sweeps, background selection, Hill-Robertson interference, adaptation).
(5) Evolutionary consequences of mating systems (e.g. clonal vs. sexual reproduction, bottlenecks, colonizing potential, efficacy of natural selection).
(6) Genomics of virulence evolution (e.g. pathogenicity islands, mobile genetic elements, chromosomal rearrangements).
SkriptNo script; handouts and material for downloading will be provided.
LiteraturThere is no textbook for this course. Relevant literature will be provided for each weekly session, selected mostly from the primary research literature.
Voraussetzungen / BesonderesRequirements:
Students must have a good background in genetics, basic population genetics, as well as evolutionary biology. At a minimum, either the course "Population and Quantitative Genetics" or the course "Ecological Genetics" should have been attended, and ideally, both of these ("Evolutionary Genetics" in the D-BIOL curriculum).

Teaching Forms:
The course consists of lectures, readings, group work, student presentations, and discussions. Active participation and preparation of students is critical for a successful learning experience and outcome.