Name | Frau Prof. Dr. Meike Akveld |
Adresse | Dep. Mathematik ETH Zürich, HG J 55 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 33 78 |
meike.akveld@math.ethz.ch | |
URL | http://www.math.ethz.ch/~akveld |
Departement | Mathematik |
Beziehung | Titularprofessorin |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-0302-10L | Komplexe Analysis | 4 KP | 3V + 1U | M. Akveld | |
Kurzbeschreibung | Grundlagen der Komplexen Analysis in Theorie und Anwendung, insbesondere globale Eigenschaften analytischer Funktionen. Einführung in die Integraltransformationen und Beschreibung einiger Anwendungen | ||||
Lernziel | Erwerb von einigen grundlegenden Werkzeuge der komplexen Analysis. | ||||
Inhalt | Beispiele analytischer Funktionen, Cauchyscher Integralsatz, Taylor- und Laurententwicklungen, Singularitäten analytischer Funktionen, Residuenkalkül. Fourierreihen und Fourier-Transformation, Laplace-Transformation. | ||||
Literatur | M. Ablowitz, A. Fokas: "Complex variables: introduction and applications", Cambridge Text in Applied Mathematics, Cambridge University Press 1997 E. Kreyszig: "Advanced Engineering Analysis", Wiley 1999 J. Brown, R. Churchill: "Complex Analysis and Applications", McGraw-Hill 1995 J. Marsden, M. Hoffman: "Basic complex analysis", W. H. Freeman 1999 P. P. G. Dyke: "An Introduction to Laplace Transforms and Fourier Series", Springer 2004 Ch. Blatter: "Komplexe Analysis, Fourier- und Laplace-Transformation", Autographie A. Oppenheim, A. Willsky: "Signals & Systems", Prentice Hall 1997 M. Spiegel: "Laplace Transforms", Schaum's Outlines, Mc Graw Hill | ||||
Voraussetzungen / Besonderes | Voraussetzungen: Analysis I und II | ||||
401-3574-61L | Introduction to Knot Theory | 6 KP | 3G | M. Akveld | |
Kurzbeschreibung | Introduction to the mathematical theory of knots. We will discuss some elementary topics in knot theory and we will repeatedly centre on how this knowledge can be used in secondary school. | ||||
Lernziel | The aim of this lecture course is to give an introduction to knot theory. In the course we will discuss the definition of a knot and what is meant by equivalence. The focus of the course will be on knot invariants. We will consider various knot invariants amongst which we will also find the so called knot polynomials. In doing so we will again and again show how this knowledge can be transferred down to secondary school. | ||||
Inhalt | Definition of a knot and of equivalent knots. Definition of a knot invariant and some elementary examples. Various operations on knots. Knot polynomials (Jones, ev. Alexander.....) | ||||
Literatur | An extensive bibliography will be handed out in the course. | ||||
Voraussetzungen / Besonderes | Prerequisites are some elementary knowledge of algebra and topology. | ||||
401-9983-00L | Mentorierte Arbeit Fachdidaktik Mathematik A Mentorierte Arbeit Fachdidaktik Mathematik für DZ, Lehrdiplom. | 2 KP | 4A | M. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, C. Rüede | |
Kurzbeschreibung | In der mentorierten Arbeit in Fachdidaktik setzen die Studierenden Inhalte der Fachdidaktikvorlesungen praktisch um und vertiefen sie. Unter Anleitung erstellen sie lernwirksame Unterrichtsmaterialien und/oder analysieren und reflektieren bestimmte Themen unter fachdidaktischen und pädagogischen Gesichtspunkten. | ||||
Lernziel | Das Ziel ist, dass die Studierenden - sich in ein Unterrichtsthema einarbeiten können, indem sie verschiedene Quellen sichten, Materialien beschaffen und über die Relevanz des Themas und des von ihnen gewählten Zugangs in fachlicher, fachdidaktischer, pädagogischer und eventuell gesellschaftlicher Hinsicht reflektieren. - zeigen, dass sie selbstständig eine lernwirksame Unterrichtssequenz erstellen und zur Einsatzreife bringen können. | ||||
Inhalt | Thematische Schwerpunkte Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht. Lernformen Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden. | ||||
Skript | Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt. | ||||
Literatur | Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt. | ||||
Voraussetzungen / Besonderes | Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden. | ||||
401-9984-00L | Mentorierte Arbeit Fachdidaktik Mathematik B Mentorierte Arbeit Fachdidaktik Mathematik für Lehrdiplom und für Studierende, die von DZ zu Lehrdiplom gewechselt haben. | 2 KP | 4A | M. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, C. Rüede | |
Kurzbeschreibung | In der mentorierten Arbeit in Fachdidaktik setzen die Studierenden Inhalte der Fachdidaktikvorlesungen praktisch um und vertiefen sie. Unter Anleitung erstellen sie lernwirksame Unterrichtsmaterialien und/oder analysieren und reflektieren bestimmte Themen unter fachdidaktischen und pädagogischen Gesichtspunkten. | ||||
Lernziel | Das Ziel ist, dass die Studierenden - sich in ein Unterrichtsthema einarbeiten können, indem sie verschiedene Quellen sichten, Materialien beschaffen und über die Relevanz des Themas und des von ihnen gewählten Zugangs in fachlicher, fachdidaktischer, pädagogischer und eventuell gesellschaftlicher Hinsicht reflektieren. - zeigen, dass sie selbstständig eine lernwirksame Unterrichtssequenz erstellen und zur Einsatzreife bringen können. | ||||
Inhalt | Thematische Schwerpunkte Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht. Lernformen Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden. | ||||
Skript | Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt. | ||||
Literatur | Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt. | ||||
Voraussetzungen / Besonderes | Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden. | ||||
401-9985-00L | Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik A Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik für DZ und Lehrdiplom. | 2 KP | 4A | M. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede | |
Kurzbeschreibung | In der mentorierten Arbeit in FV verknüpfen die Studierenden gymnasiale und universitäre Aspekte des Fachs mit dem Ziel, ihre Lehrkompetenz im Hinblick auf curriculare Entscheidungen und auf die zukünftige Entwicklung des Unterrichts zu stärken. Angeleitet erstellen sie Texte, welche die anvisierte Leserschaft, in der Regel gymnasiale Fachlehrpersonen, unmittelbar verstehen. | ||||
Lernziel | Das Ziel ist, dass die Studierenden - sich in ein neues Thema einarbeiten, indem sie Materialien beschaffen und die Quellen studieren und so ihre Fachkompetenz gezielt erweitern können. - selbständig einen Text über den Gegenstandentwickeln und dabei einen speziellen Fokus auf die mathematische Verständlichkeit in Bezug auf den Kenntnisstand der anvisierten Leser/Leserinnen legen können. - Möglichkeiten berufsbezogener fachlicher Weiterbildung ausprobieren. | ||||
Inhalt | Thematische Schwerpunkte: Die mentorierte Arbeit in FV besteht in der Regel in einer Literaturarbeit über ein Thema, das einen Bezug zum gymnasialem Unterricht oder seiner Weiterentwicklung hat. Die Studierenden setzen darin Erkenntnisse aus den Vorlesungen in FV praktisch um. Lernformen: Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden. | ||||
Skript | Eine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt. | ||||
Literatur | Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt. | ||||
Voraussetzungen / Besonderes | Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden. | ||||
401-9986-00L | Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik B Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik für Lehrdiplom und für Studierende, die von DZ zu Lehrdiplom gewechselt haben. | 2 KP | 4A | M. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede | |
Kurzbeschreibung | In der mentorierten Arbeit in FV verknüpfen die Studierenden gymnasiale und universitäre Aspekte des Fachs mit dem Ziel, ihre Lehrkompetenz im Hinblick auf curriculare Entscheidungen und auf die zukünftige Entwicklung des Unterrichts zu stärken. Angeleitet erstellen sie Texte, welche die anvisierte Leserschaft, in der Regel gymnasiale Fachlehrpersonen, unmittelbar verstehen. | ||||
Lernziel | Das Ziel ist, dass die Studierenden - sich in ein neues Thema einarbeiten, indem sie Materialien beschaffen und die Quellen studieren und so ihre Fachkompetenz gezielt erweitern können. - selbständig einen Text über den Gegenstandentwickeln und dabei einen speziellen Fokus auf die mathematische Verständlichkeit in Bezug auf den Kenntnisstand der anvisierten Leser/Leserinnen legen können. - Möglichkeiten berufsbezogener fachlicher Weiterbildung ausprobieren. | ||||
Inhalt | Thematische Schwerpunkte: Die mentorierte Arbeit in FV besteht in der Regel in einer Literaturarbeit über ein Thema, das einen Bezug zum gymnasialem Unterricht oder seiner Weiterentwicklung hat. Die Studierenden setzen darin Erkenntnisse aus den Vorlesungen in FV praktisch um. Lernformen: Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden. | ||||
Skript | Eine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt. | ||||
Literatur | Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt. | ||||
Voraussetzungen / Besonderes | Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden. |