Stephan Hug: Catalogue data in Autumn Semester 2020 |
Name | Dr. Stephan Hug |
stephan.hug@usys.ethz.ch | |
Department | Environmental Systems Science |
Relationship | Lecturer |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
529-2001-02L | Chemistry I | 4 credits | 2V + 2U | J. Cvengros, J. E. E. Buschmann, P. Funck, S. Hug, E. C. Meister, R. Verel | |
Abstract | General Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium. | ||||
Learning objective | Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems. | ||||
Content | 1. Stoichiometry Amount of substance and mass. Composition of chemical compounds. Reaction equation. Ideal gas law. 2. Atoms Elementary particles and atoms. Electron configuration of the elements. Periodic system. 3. Chemical bonding and its representation. Spatial arrangement of atoms in molecules. Molecular orbitals. 4. Basics of chemical thermodynamics System and surroundings. Description of state and change of state of chemical systems. 5. First law of thermodynamics Internal energy. Heat and Work. Enthalpy and reaction enthalpy. 6. Second law of thermodynamics Entropy. Change of entropy in chemical systems and universe. Reaction entropy. 7. Gibbs energy and chemical potential. Combination of laws of thermodynamics. Gibbs energy and chemical reactions. Activities of gases, condensed substances and species in solution. Equilibrium constant. 8. Chemical equilibrium Law of mass action. Reaction quotient and equilibrium constant. Phase transition equilibrium. 9. Acids and bases Properties of acids and bases. Dissociation of acids and bases. pH and the calculation of pH-values in acid-base systems. Acid-base diagrams. Buffers. Polyprotic acids and bases. 10. Dissolution and precipitation. Heterogeneous equilibrium. Dissolution and solubility product. Carbon dioxide-carbonic acid-carbonate equilibrium. | ||||
Lecture notes | Online-Skript mit durchgerechneten Beispielen. | ||||
Literature | Charles E. Mortimer, CHEMIE - DAS BASISWISSEN DER CHEMIE. 12. Auflage, Georg Thieme Verlag Stuttgart, 2015. Weiterführende Literatur: Theodore L. Brown, H. Eugene LeMay, Bruce E. Bursten, CHEMIE. 10. Auflage, Pearson Studium, 2011. (deutsch) Catherine Housecroft, Edwin Constable, CHEMISTRY: AN INTRODUCTION TO ORGANIC, INORGANIC AND PHYSICAL CHEMISTRY, 3. Auflage, Prentice Hall, 2005.(englisch) | ||||
701-1341-00L | Water Resources and Drinking Water | 3 credits | 2G | S. Hug, M. Berg, F. Hammes, U. von Gunten | |
Abstract | The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries. | ||||
Learning objective | The goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality. | ||||
Content | The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed. | ||||
Lecture notes | Handouts will be distributed | ||||
Literature | Will be mentioned in handouts |