Markus Reiher: Catalogue data in Spring Semester 2023

Award: The Golden Owl
Name Prof. Dr. Markus Reiher
FieldTheoretische Chemie
Address
Inst. Mol. Phys. Wiss.
ETH Zürich, HCI F 235
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telephone+41 44 633 43 08
E-mailmarkus.reiher@phys.chem.ethz.ch
DepartmentChemistry and Applied Biosciences
RelationshipFull Professor

NumberTitleECTSHoursLecturers
401-3667-23LCase Studies Seminar (Spring Semester 2023) Information 3 credits2SV. C. Gradinaru, R. Hiptmair, R. Käppeli, M. Reiher
AbstractIn the CSE Case Studies Seminar invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list.
Learning objective
ContentIn the CSE Case Studies Seminar invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list (containing articles from, e.g., Nature, Science, Scientific American, etc.). If the underlying paper comprises more than 15 pages, two or three consecutive case studies presentations delivered by different students can be based on it. Consistency in layout, style, and contents of those presentations is expected.
Prerequisites / NoticeThe talks ar in presence only (no zoom)! Student talks are in parallel sessions in the two rooms, the invited talks take place in the larger lecture hall.

75% attendance and a short presentation on a published paper out of a list or on some own project are mandatory.

Students have to register their presentations online until the second Wednesday of the semester on
https://rw.ethz.ch/the-programme/case-studies.html

The stu­dent talks will be grouped by sub­ject, so we'll de­cide the ac­tual dates of the in­di­vidual talks.

Students that realize that they will not fulfill this criteria have to contact the teaching staff or de-register before the end of semester from the Seminar if they want to avoid a "Fail" in their documents. Later de-registrations will not be considered.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesfostered
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingfostered
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
401-5940-00LSeminar in Chemistry for CSE4 credits2SP. H. Hünenberger, M. Reiher
AbstractThe student will carry out a literature study on a topic of his or her liking or suggested by the supervisor in the area of computer simulation in chemistry, the results of which are to be presented both orally and in written form.
Learning objective
529-0474-00LQuantum Chemistry6 credits3GM. Reiher, J. P. Unsleber, T. Weymuth
AbstractIntroduction into the basic concepts of electronic structure theory and into numerical methods of quantum chemistry. Exercise classes are designed to deepen the theory; practical case studies using quantum chemical software to provide a 'hands-on' expertise in applying these methods.
Learning objectiveNowadays, chemical research can be carried out in silico, an intellectual achievement for which Pople and Kohn have been awarded the Nobel prize of the year 1998. This lecture shows how that has been accomplished. It works out the many-particle theory of many-electron systems (atoms and molecules) and discusses its implementation into computer programs. A complete picture of quantum chemistry shall be provided that will allow students to carry out such calculations on molecules (for accompanying experimental work in the wet lab or as a basis for further study of the theory).
ContentBasic concepts of many-particle quantum mechanics. Derivation of the many-electron theory for atoms and molecules; starting with the harmonic approximation for the nuclear problem and with Hartree-Fock theory for the electronic problem to Moeller-Plesset perturbation theory and configuration interaction and to coupled cluster and multi-configurational approaches. Density functional theory. Case studies using quantum mechanical software.
Lecture notesHand-outs in German will be provided for each lecture (they are supplemented by (computer) examples that continuously illustrate how the theory works).

All information regarding this course, including links to the online streaming, will be available on this web page:
https://reiher.ethz.ch/courses-and-seminars/exercises/QC_2023.html
LiteratureTextbooks on Quantum Chemistry:
F.L. Pilar, Elementary Quantum Chemistry, Dover Publications
I.N. Levine, Quantum Chemistry, Prentice Hall

Hartree-Fock in basis set representation:
A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill

Textbooks on Computational Chemistry:
F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons
C.J. Cramer, Essentials of Computational Chemistry, John Wiley & Sons
Prerequisites / NoticeBasic knowledge in quantum mechanics (e.g. through course physical chemistry III - quantum mechanics) required
529-0479-00LTheoretical Chemistry, Molecular Spectroscopy and Dynamics1 credit2SF. Merkt, M. Reiher, J. Richardson, R. Signorell, H. J. Wörner
AbstractSeminar on theoretical chemistry, molecular spectroscopy and dynamics (research seminar)
Learning objectiveSeminar on theoretical chemistry, molecular spectroscopy and dynamics (research seminar)
529-0490-00LSpecial Topics in Theoretical Chemistry0 credits1SM. Reiher
AbstractWeekly seminar programme on special topics in theoretical and quantum chemistry. Talks delivered by PhD students and PostDocs.
Learning objectiveadvanced course for PhD students and other co-workers
Contentdepends on state of the art in research
Lecture notesnone
529-0491-00LSeminar in Computational Chemistry C40 credits2SM. Reiher
AbstractResearch seminar with invited lecturers
Learning objectiveResearch seminar with invited lecturers
529-0499-00LPhysical Chemistry0 credits1KG. Jeschke, A. Barnes, M. Ernst, P. H. Hünenberger, F. Merkt, M. Reiher, J. Richardson, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner
AbstractSeminar series covering current developments in Physical Chemistry
Learning objectiveDiscussing current developments in Physical Chemistry
529-0809-00LTheoretical Chemistry Seminar0 credits2SM. Reiher, J. Richardson
AbstractSeminar on recent developments in Theoretical Chemistry presented by guest speakers.
Learning objectiveDoktorats- und Mitarbeiterschulung
ContentVariiert nach aktuellem Stand der Forschung
LiteratureWill be announced on http://www.reiher.ethz.ch/courses-and-seminars/theoretical-chemistry.html