Sebastian Kozerke: Catalogue data in Autumn Semester 2022 |
Name | Prof. Dr. Sebastian Kozerke |
Field | Biomedical Imaging |
Address | Professur für Biomed. Bildgebung ETH Zürich, ETZ F 94 Gloriastrasse 35 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 35 49 |
kozerke@biomed.ee.ethz.ch | |
Department | Information Technology and Electrical Engineering |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
227-0385-10L | Biomedical Imaging | 6 credits | 5G | S. Kozerke, K. P. Prüssmann | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to diagnostic medical imaging based on electromagnetic and acoustic fields including X-ray planar and tomographic imaging, radio-tracer based nuclear imaging techniques, magnetic resonance imaging and ultrasound-based procedures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Upon completion of the course students are able to: • Explain the physical and mathematical foundations of diagnostic medical imaging systems • Characterize system performance based on signal-to-noise ratio, contrast-to-noise ratio and transfer function • Design a basic diagnostic imaging system chain including data acquisition and data reconstruction • Identify advantages and limitations of different imaging methods in relation to medical diagnostic applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | • Introduction (intro, overview, history) • Signal theory and processing (foundations, transforms, filtering, signal-to-noise ratio) • X-rays (production, tissue interaction, contrast, modular transfer function) • X-rays (resolution, detection, digital subtraction angiography, Radon transform) • X-rays (filtered back-projection, spiral computed tomography, image quality, dose) • Nuclear imaging (radioactive tracer, collimation, point spread function, SPECT/PET) • Nuclear imaging (detection principles, image reconstruction, kinetic modelling) • Magnetic Resonance (magnetic moment, spin transitions, excitation, relaxation, detection) • Magnetic Resonance (plane wave encoding, Fourier reconstruction, pulse sequences) • Magnetic Resonance (contrast mechanisms, gradient- and spin-echo, applications) • Ultrasound (mechanical wave generation, propagation in tissue, reflection, transmission) • Ultrasound (spatial and temporal resolution, phased arrays) • Ultrasound (Doppler shift, implementations, applications) • Summary, example exam questions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Analysis, Linear algebra, Physics, Basics of signal theory, Basic skills in Matlab/Python programming | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0386-00L | Biomedical Engineering | 4 credits | 3G | J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the basic vocabulary of biomedical engineering and getting familiar with concepts that govern common medical instruments and the most important organs from an engineering point of view. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations. It also serves as an introduction to the field for students of the ITET, MAVT, HEST and other bachelor programs. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | History of BME and the role of biomedical engineers. Ethical issues related to BME. Biomedical sensors both wearable and also biochemical sensors. Bioelectronics: Nernst equation, Donnan equilibrium, equivalent circuits of biological membranes and bioelectronic devices. Bioinformatics: genomic and proteomic tools, databases and basic calculations. Equations describing basic reactions and enzyme kinetics. Medical optics: Optical components and systems used in hospitals. Basic concepts of tissue engineering and organ printing. Biomaterials and their medical applications. Function of the heart and the circulatory system. Transport and exchange of substances in the human body, compartment modeling. The respiratory system. Bioimaging. Orthopedic biomechanics. Lectures (2h), discussion of practical exercises (1h) and homework exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino AND moodle page of the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | No specific requirements, BUT ITET, MAVT, PHYS students will have to learn a lot of new words related to biochemistry, biology and medicine, while HEST and BIOL students will have to grasp basic engineering concepts (circuits, equations, etc.). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0970-00L | Research Topics in Biomedical Engineering Does not take place this semester. | 0 credits | 1K | K. P. Prüssmann, S. Kozerke, M. Stampanoni, K. Stephan, J. Vörös | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Current topics in Biomedical Engineering presented by speakers from academia and industry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Getting insight into actual areas and problems of Biomedical Engineering an Health Care. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0980-00L | Seminar on Biomedical Magnetic Resonance | 0 credits | 1S | K. P. Prüssmann, S. Kozerke, M. Weiger Senften | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Current developments and problems of magnetic resonance imaging (MRI) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Getting insight into advanced topics in magnetic resonance imaging |