Colombo Bolognesi: Catalogue data in Autumn Semester 2020 |
Name | Prof. Dr. Colombo Bolognesi |
Field | Millimeterwellen und Terahertz-Elektronik |
Address | Professur f. Millimeterwellen-Elek ETH Zürich, ETZ K 85 Gloriastrasse 35 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 87 75 |
bcolombo@ethz.ch | |
Department | Information Technology and Electrical Engineering |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
227-0053-00L | High-Frequency Design Techniques | 4 credits | 2V + 2U | C. Bolognesi | |
Abstract | Introduction to the basics of high-frequency circuit design techniques used in the realization of high-bandwidth communication systems and devices. Modern society depends on increasingly large data masses that need to be transmitted/processed as rapidly as possible: higher carrier frequencies allow wider bandwidth channels which enable higher data transmission rates. | ||||
Learning objective | Familiarize students with the essential tools and principles exploited in high-frequency design. Introduction to circuit simulation. | ||||
Content | Introduction to wireless, radio spectrum, review of vectors and complex numbers, AC circuit analysis, matching networks, distributed circuit design, transmission lines and transmission line equations, reflection coefficients, the Smith Chart and its software, voltage standing wave ratio (VSWR), skin effect, matrix analysis, scattering parameters, electromagnetic fields and waves, antenna basics. | ||||
Lecture notes | Lecture notes | ||||
Literature | Textbook: High Frequency Techniques, by Joseph F. White, 2004, Wiley-Interscience & IEEE Press ISBN 0-471-45591-1 (free online access via ETH-Bibliothek) | ||||
227-0112-00L | High-Speed Signal Propagation Does not take place this semester. | 6 credits | 2V + 2U | C. Bolognesi | |
Abstract | Understanding of high-speed signal propagation in microwave cables and integrated circuits and printed circuit boards. As clock frequencies rise in the GHz domain, there is a need grasp signal propagation to maintain good signal integrity in the face of symbol interference and cross-talk. The course is of high value to all interested in high-speed analog (RF, microwave) or digital systems. | ||||
Learning objective | Understanding of high-speed signal propagation in interconnects, microwave cables and integrated transmission lines such as microwave integrated circuits and/or printed circuit boards. As system clock frequencies continuously rise in the GHz domain, a need urgently develops to understand high-speed signal propagation in order to maintain good signal integrity in the face of phenomena such as inter-symbol interference (ISI) and cross-talk. Concepts such as Scattering parameters (or S-parameters) are key to the characterization of networks over wide bandwidths. At high frequencies, all structures effectively become "transmission lines." Unless care is taken, it is highly probable that one ends-up with a bad transmission line that causes the designed system to malfunction. Filters will also be considered because it turns out that some of the problems associated by lossy transmission channels (lines, cables, etc) can be corrected by adequate filtering in a process called "equalization." | ||||
Content | Transmission line equations of the lossless and lossy TEM-transmission line. Introduction of current and voltage waves. Representation of reflections in the time and frequency domain. Application of the Smith chart. Behavior of low-loss transmission lines. Attenuation and impulse distortion due to skin effect. Transmission line equivalent circuits. Group delay and signal dispersion. Coupled transmission lines. Scattering parameters. Butterworth-, Chebychev- and Bessel filter approximations: filter synthesis from low-pass filter prototypes. | ||||
Lecture notes | Script: Leitungen und Filter (In German). | ||||
Prerequisites / Notice | Exercises will be held in English. |