Paola Picotti: Catalogue data in Autumn Semester 2022

Name Prof. Dr. Paola Picotti
FieldMolecular Systems Biology
Inst. f. Molekulare Systembiologie
ETH Zürich, HPM H 46
Otto-Stern-Weg 3
8093 Zürich
Telephone+41 44 633 25 58
Fax+41 44 633 12 98
RelationshipFull Professor

551-0352-00LIntroduction to Mass Spectrometry-Based Proteomics Restricted registration - show details
Number of participants limited to 12.

The enrolment is done by the D-BIOL study administration.
6 credits7PL. Gillet, P. Picotti
AbstractProtein Analysis by Mass Spectrometry
The following topics will be covered: basics of biological mass spectrometry, including instrumentation, data collection and data analysis; applications to protein identification and characterization; sample preparation methods; proteomics strategies; and quantitative analysis.
ObjectiveHow to prepare a protein sample for MS analysis (trypsin digestion, C18 clean-up)
Principles of data acquisition LC-MS (QTOF and/or Ion Trap instruments)
Perform qualitative proteomic analysis (protein identification with Mascot and/or Sequest Softwares)
Perform quantitative proteomic analysis (label-free and labeled analyses)
Analyze/interpret the data to find up/down regulated proteins
551-1005-00LBioanalytics Information 4 credits4GP. Picotti, F. Allain, V. Korkhov, M. Pilhofer, R. Schlapbach, K. Weis, K. Wüthrich, further lecturers
AbstractThe course will introduce students to a selected set of laboratory techniques that are foundational to modern biological research.
ObjectiveFor each of the techniques covered in the course, the students will be able to explain:
a) the physical, chemical and biological principles underlying the technique,
b) the requirements for the sample,
c) the type of raw data collected by the technique,
d) the assumptions and auxiliarry information used in the interpretation of the data and
e) how these data can be used to answer a given biological question.
By the end of the course the students will be able to select the appropriate experimental technique to answer a given biological problem and will be able to discuss the
advantages and limitations of individual techniques as well as how different techniques can be combined to gain a more complete understanding of a given biological questions.
ContentThe course will be based on a combination of lectures, selfstudy elements and exercises.

The focus will be on the following experimental techniques:

- DNA sequencing
- chromatography
- mass-spectrometry
- UV/Vis and fluorescence spectrometry
- light microscopy
- electron microscopy
- X-ray crystallography
- NMR spectroscopy
Lecture notesThe course is supported by a Moodle page that gives access to all supporting materials necessary for the course.
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Media and Digital Technologiesfostered
Project Managementfostered
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed