Name | Prof. Dr. Samuel C. Zeeman |
Field | Plant Biochemistry |
Address | Professur für Pflanzenbiochemie ETH Zürich, LFW E 53.1 Universitätstrasse 2 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 82 75 |
samuel.zeeman@biol.ethz.ch | |
Department | Biology |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
551-0120-00L | Plant Biology Colloquium (Autumn Semester) This compulsory course is required only once. It may be taken in autumn as course 551-0120-00 "Plant Biology Colloquium (Autumn Semester)" or in spring as course 551-0120-01 "Plant Biology Colloquium (Spring Semester)". | 2 credits | 1K | S. C. Zeeman, K. Bomblies, O. Voinnet | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Current topics in Molecular Plant Biology presented by internal and external speakers from accademia. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Getting insight into actual areas and challenges of Molecular Plant Biology. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | http://www.impb.ethz.ch/news-and-events/colloquium-impb.html | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0127-00L | Fundamentals of Biology III: Multicellularity | 8 credits | 6G | M. Stoffel, M. Künzler, O. Y. Martin, U. Suter, S. Werner, A. Wutz, S. C. Zeeman | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture conveys the fundamental concepts underlying multicellularity with an emphasis on the molecular basis of multicellular biological systems and their functional integration into coherent wholes. The structural and functional specialization in multicellular organisms will be discussed by highlighting common and specific functions in fungi, plants, and animals (including humans). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | 1.Students can describe advantages and challenges associated with being multicellular and outline independent solutions that organisms have developed to cope with the challenges of complex multicellularity . 2.Students can explain how the internal and external structures of fungi, plants and animals function to support survival, growth, behavior, and reproduction. 3.Students can explain the basic pathways and mechanisms of cellular communication regulating cellular behavior (cell adhesion, metabolism, proliferation, reproduction, development). 4.Students can describe how a single cell develops from one cell into many, each with different specialized functions. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The lecture introduces the structural and functional specialization in fungi, plants and animals, including humans. After providing an overview on the diversity of eukaryotic organisms, the lecture will discuss how fungi, plants, animals and humans have evolved structures and strategies to cope with the challenges of multicellularity. The molecular basis underlying communication, coordination and differentiation will be conveyed and complemented by key aspects of reproduction, metabolism development, and regeneration. Topics include form and function of fungi and plants, human anatomy and physiology, metabolism, cell signaling, adhesion, stem cells, regeneration, reproduction, and development. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Alberts et al. 'Molecular Biology of the Cell' 6th edition Smith A.M., et al. “Plant Biology” Garland Science, New York, Oxford Campbell “Biology”, 11th Edition | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Some lecture are held in English. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0127-01L | Plants and Fungi | 4 credits | 3G | S. C. Zeeman, M. Künzler, O. Y. Martin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture conveys the fundamental concepts underlying multicellularity with an emphasis on the molecular basis of multicellular biological systems and their functional integration into coherent wholes. The structural and functional specialization in multicellular organisms will be discussed by highlighting common and specific functions in fungi and plant.s | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | 1.Students can describe advantages and challenges associated with being multicellular and outline independent solutions that organisms have developed to cope with the challenges of complex multicellularity . 2.Students can explain how the internal and external structures of fungi and plants function to support survival, growth, behavior, and reproduction. 3.Students can explain the basic pathways and mechanisms of cellular communication regulating cellular behavior (cell adhesion, metabolism, proliferation, reproduction, development). 4.Students can describe how a single cell develops from one cell into many, each with different specialized functions. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The lecture introduces the structural and functional specialization in fungi and plants. After providing an overview on the diversity of eukaryotic organisms, the lecture will discuss how fungi and plants have evolved structures and strategies to cope with the challenges of multicellularity. The molecular basis underlying communication, coordination and differentiation will be conveyed and complemented by key aspects of reproduction, metabolism development, and regeneration. Topics include form and function of fungi and plants, metabolism, cell signaling, adhesion, stem cells, regeneration, reproduction, and development. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Alberts et al. 'Molecular Biology of the Cell' 6th edition Smith A.M., et al. “Plant Biology” Garland Science, New York, Oxford Campbell “Biology”, 11th Edition | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Some lecture are held in English. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0205-00L | Challenges in Plant Sciences Number of participants limited to 40. | 2 credits | 2K | S. C. Zeeman, B. Keller, M. Paschke, T. Städler, further lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The colloquium “Challenges in Plant Sciences” is a core class of the Zurich-Basel Plant Science Center's PhD program. The colloquium introduces participants to the broad spectrum of plant sciences within the network. The course offers the opportunity to approach interdisciplinary topics in the field of plant sciences. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Objectives of the colloquium are: Introduction to resecent research in all fields of plant sciences Working in interdisciplinary teams on the topics Developing presentation and discussion skills | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The topics encompass integrated knowledge on current plant research, ranging from the molecular level to the ecosystem level, and from basic to applied science while making use of the synergies between the different research groups within the PSC. More information on the content: https://www.plantsciences.uzh.ch/en/teaching/masters/colloquium.html | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0311-00L | Molecular Life of Plants | 6 credits | 4V | S. C. Zeeman, K. Bomblies, O. Voinnet | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The advanced course introduces students to plants through a concept-based discussion of developmental processes that integrates physiology and biochemistry with genetics, molecular biology, and cell biology. The course follows the life of the plant, starting with the seed, progressing through germination to the seedling and mature plant, and ending with reproduction and senescence. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The new course "Molecular Life of Plants" reflects the rapid advcances that are occurring in the field of experimental plant biology as well as the changing interests of students being trained in this discipline. Contemporary plant biology courses emphasize a traditional approach to experimental plant biology by discussing discrete topics that are removed from the context of the plant life cycle. The course will take an integrative approach that focuses on developmental concepts. Whereas traditional plant physiology courses were based on research carried out on intact plants or plant organs and were often based on phenomenological observations, current research in plant biology emphasizes work at the cellular, subcellular and molecular levels. The goal of "Molecular Life of Plants" is to train students in integrative approaches to understand the function of plants in a developmental context. While the course focuses on plants, the training integrative approaches will also be useful for other organisms. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course "Molecular Life of Plants" will cover the following topics: Seed structure and physiology, their dormancy and germination. Seedling establishment and early development. Structure and Function of Meristems, including stem cells. Plant organ development (leaves, roots, flowers etc.). Plant reproduction. The plant vasculature for long-distance transport and other specialized tissues. Sensing and responding to the abiotic environment Plant-microbe interactions; beneficial friends or pathogenic foes? Polyploidy; the benefits, problems and solutions to of multiple genomes. Photosynthesis and carbon partitioning. Photorespiration and the evolution of C4 metabolism. Starch biosynthesis and degradation. Chloroplast development and chlorophyll biosynthesis. Senescence mechanisms in plants. General principles of RNA silencing MicroRNAs: discovery, general principle and modes of action at the cellular and system levels. Chromatin-based RNA silencing. Antiviral RNA silencing. RNA silencing & defense against non-viral pathogens. RNA silencing movement and amplification. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0351-00L | Membrane Biology Number of participants limited to 12. The enrolment is done by the D-BIOL study administration. | 6 credits | 7P | V. Korkhov, U. Kutay, S. C. Zeeman | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will introduce the students to the key concepts in membrane biology and will allow them to be involved in laboratory projects related to that broad field. The course will consist of lectures, literature discussions, and practical laboratory work in small groups. Results of the practical projects will be presented during the poster session at the end of the course. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aim of the course is to expose the students to a wide range of modern research areas encompassed by the field of membrane biology. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Students will be engaged in research projects aimed at understanding the biological membranes at the molecular, organellar and cellular levels. Students will design and perform experiments, evaluate experimental results, analyze the current scientific literature and understand the relevance of their work in the context of the current state of the membrane biology field. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No script | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The recommended literature, including reviews and primary research articles, will be provided during the course | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course will be taught in English. All general lectures will be held at ETH Hoenggerberg. Students will be divided into small groups to carry out experiments at ETH or at the Paul Scherrer Institute. Travel to the Paul Scherrer Institute will be by public transportation. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0359-00L | Plant Biochemistry Number of participants limited to 11. The enrolment is done by the D-BIOL study administration. | 6 credits | 7P | S. C. Zeeman, B. Pfister | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In this block course, students actively participate in ongoing research projects on plant metabolism and are tutored by doctoral students and postdocs. The theoretical background of the projects is provided in a lecture series. Finally, students discuss their projects and results during an interactive poster session. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Through supervision in small groups (either individually or in groups of two) students learn to conduct experiments in molecular plant biology, interpret the results, record them and communicate them to peers. Students also gain an insight into the larger context of their projects and how they are planned in the longer term. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Participation in a project from the following list is possible: 1) Photosynthesis: How is photosynthesis regulated and how is photoassimilated carbon distributed in plants? 2) Biology of chloroplasts: How do chloroplasts develop and how is their function coordinated with that of the whole cell? 3) Starch biosynthesis and degradation: How are complex, semi-crystalline starch granules produced from monosaccharides and how are they broken down again to release energy? | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No script | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Descriptions of the possible projects including individual reading suggestions will be handed out beforehand. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
|