André R. Studart: Catalogue data in Autumn Semester 2018 |
Name | Prof. Dr. André R. Studart |
Field | Complex Materials |
Address | Complex Materials ETH Zürich, HCI G 537 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 70 50 |
Fax | +41 44 633 15 45 |
andre.studart@mat.ethz.ch | |
Department | Materials |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
327-0301-00L | Materials Science I | 3 credits | 3G | J. F. Löffler, R. Schäublin, A. R. Studart, P. Uggowitzer | |
Abstract | Basic concepts of metal physics, ceramics, polymers and their technology. | ||||
Objective | Based on the lecture 'Introduction to Materials Science' this lecture aims to give a detailed understanding of important aspects of materials science, with special emphasis on metallic and ceramic materials. | ||||
Content | Thermodynamics and phase diagrams, crystal interfaces and microstructure, diffusional transformations in solids, and diffusionless transformations will be presented for metallic alloys. The basics of the ionic and covalent chemical bonds, the bond energy, the crystalline structure, four important structural ceramics, and the properties of glasses and glass ceramics will be presented for ceramic materials. | ||||
Lecture notes | For metals see: http://www.metphys.mat.ethz.ch/education/lectures/materialwissenschaft-i.html For ceramics see: http://www.complex.mat.ethz.ch/education/lectures.html | ||||
Literature | Metals: D. A. Porter, K. E. Easterling Phase Transformations in Metals and Alloys - Second Edition ISBN : 0-7487-5741-4 Nelson Thornes Ceramics: - Munz, D.; Fett, T: Ceramics, Mechanical Properties, Failure Behaviour, Materials Selection, - Askeland & Phulé: Science and Engineering of Materials, 2003 - diverse CEN ISO Standards given in the slides - Barsoum MW: Fundamentals of Ceramics: - Chiang, Y.M.; Dunbar, B.; Kingery, W.D; Physical Ceramics, Principles für Ceramic Science and Engineering. Wiley , 1997 - Hannik, Kelly, Muddle: Transformation Toughening in Zirconia Containing Ceramics, J Am Ceram Soc 83 [3] 461-87 (2000) - "High-Tech Ceramics: viewpoints and perspectives", ed G. Kostorz, Academic Press, 1989. Chapter 5, 59-101. - "Brevieral Ceramics" published by the "Verband der Keramischen Industrie e.V.", ISBN 3-924158-77-0. partly its contents may be found in the internet @ http://www.keramverband.de/brevier_engl/brevier.htm or on our homepage - Silicon-Based Structural Ceramics (Ceramic Transactions), Stephen C. Danforth (Editor), Brian W. Sheldon, American Ceramic Society, 2003, - Silicon Nitride-1, Shigeyuki Somiya (Editor), M. Mitomo (Editor), M. Yoshimura (Editor), Kluwer Academic Publishers, 1990 3. Zirconia and Zirconia Ceramics. Second Edition, Stevens, R, Magnesium Elektron Ltd., 1986, pp. 51, 1986 - Stabilization of the tetragonal structure in zirconia microcrystals, RC Garvie, The Journal of Physical Chemistry, 1978 - Phase relationships in the zirconia-yttria system, HGM Scott - Journal of Materials Science, 1975, Springer - Thommy Ekström and Mats Nygren, SiAION Ceramics J Am Cer Soc Volume 75 Page 259 - February 1992 - "Formation of beta -Si sub 3 N sub 4 solid solutions in the system Si, Al, O, N by reaction sintering--sintering of an Si sub 3 N sub 4 , AlN, Al sub 2 O sub 3 mixture" Boskovic, L J; Gauckler, L J, La Ceramica (Florence). Vol. 33, no. N-2, pp. 18-22. 1980. - Alumina: Processing, Properties, and Applications, Dorre, E; Hubner, H, Springer-Verlag, 1984, pp. 329, 1984 9. | ||||
Prerequisites / Notice | - In the first part of the lecture the bases are obtained for metals. In the second part the basics of cermics will be presented. - One part of the lecture will be taught in English, but most of it in German. | ||||
327-0503-AAL | Ceramics I Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 3 credits | 6R | M. Niederberger, T. Graule, A. R. Studart | |
Abstract | Introduction to ceramic processing | ||||
Objective | The aim is the understanding of the basic principles of ceramic processing. | ||||
Content | Basic chemical processes for powder production. Liquid-phase synthesis methods. Sol-Gel processes. Classical crystallization theory. Gas phase reactions. Basics of the collidal chemistry for suspension preparation and control. Characterization techniques for powders and colloids. Shaping techniques for bulk components and thin films. Sintering processes and microstructural control. | ||||
Literature | Books and references will be provided on the lecture notes. | ||||
327-0503-00L | Ceramics I | 3 credits | 2V + 1U | M. Niederberger, T. Graule, A. R. Studart | |
Abstract | Introduction to ceramic processing. | ||||
Objective | The aim is the understanding of the basic principles of ceramic processing. | ||||
Content | Basic chemical processes for powder production. Liquid-phase synthesis methods. Sol-Gel processes. Classical crystallization theory. Gas phase reactions. Basics of the collidal chemistry for suspension preparation and control. Characterization techniques for powders and colloids. Shaping techniques for bulk components and thin films. Sintering processes and microstructural control. | ||||
Literature | Books and references will be given on the lecture notes. | ||||
327-1221-00L | Biological and Bio-Inspired Materials ![]() Students that already enroled in this course during their Bachelor's degree studies are not allowed to enrol again in their Master's. | 4 credits | 3G | A. R. Studart, I. Burgert, E. Cabane, R. Nicolosi Libanori | |
Abstract | The aim of this course is to impart knowledge on the underlying principles governing the design of biological materials and on strategies to fabricate synthetic model systems whose structural organization resembles those of natural materials. | ||||
Objective | The course first offers a comprehensive introduction to evolutive aspects of materials design in nature and a general overview about the most common biopolymers and biominerals found in biological materials. Next, current approaches to fabricate bio-inspired materials are presented, followed by a detailed evaluation of their structure-property relationships with focus on mechanical, optical, surface and adaptive properties. | ||||
Content | This course is structured in 3 blocks: Block (I): Fundamentals of engineering in biological materials - Biological engineering principles - Basic building blocks found in biological materials Block (II): Replicating biological design principles in synthetic materials - Biological and bio-inspired materials: polymer-reinforced and ceramic-toughened composites - Lightweight biological and bio-inspired materials - Functional biological and bio-inspired materials: surfaces, self-healing and adaptive materials Block (III): Bio-inspired design and systems - Mechanical actuation - plant systems - Bio-inspiration in the built environment | ||||
Lecture notes | Copies of the slides will be made available for download before each lecture. | ||||
Literature | The course is mainly based on the books listed below. Additional references will be provided during the lectures. 1. M. A. Meyers and P-Y. Chen; Biological Materials Science - Biological Materials, Bioinspired Materials and Biomaterials. (Cambridge University Press, 2014). 2. P. Fratzl, J. W. C. Dunlop and R. Weinkamer; Materials Design Inspired by Nature: Function Through Inner Architecture. (The Royal Society of Chemistry, 2013). 3. A. R. Studart, R. Libanori, R. M. Erb, Functional Gradients in Biological Composites in Bio- and Bioinspired Nanomaterials. (Wiley-VCH Verlag GmbH & Co. KGaA, 2014), pp. 335-368. |