André R. Studart: Katalogdaten im Herbstsemester 2022 |
Name | Herr Prof. Dr. André R. Studart |
Lehrgebiet | Komplexe Materialien |
Adresse | Complex Materials ETH Zürich, HCI G 537 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 70 50 |
Fax | +41 44 633 15 45 |
andre.studart@mat.ethz.ch | |
Departement | Materialwissenschaft |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
327-0603-00L | Ceramics II Nur für Studierende Materialwissenschaft Bachelor Reglement 2017. | 3 KP | 2V + 1U | A. R. Studart | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Understanding of the electrical, dielectric and magnetic properties of functional ceramics for materials engineers, physicists and electrical engineers. An introduction is given to modern ceramics materials with multiple functions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Ceramics II covers the basic principles of functional ceramics such as linear and non-linear dielectrics, semiconductors, ionic and mixed ionic-electronic conductors as well as materials aspects of high temperature superconductors. Examples of applications cover the range from piezo-, pyro and thermoelectric materials over sensors and solid oxide fuel cells to superconducting magnets. At the end of the course, the students should be able to select the chemistry, design the microstructure and devise processing routes to fabricate functional ceramics for electronic, electromechanical, optical and magnetic applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Applications of functional ceramics - Dieletrics fundamentals & insulators - Capacitors & resonators - Ferroelectricity & piezoelectricity - Pyroelectricity and thermoelectric ceramics - Defect chemistry - Conductors - Impedance spectroscopy - Magnetic ceramics - Superconductors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Electroceramics; J.A.Moulson Free download of the book in ETH domain is possible following the link: http://www3.interscience.wiley.com/cgi-bin/booktoc/104557643 Principles of Electronic Ceramics; L.L.Hench, J.K.West | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-1221-00L | Biological and Bio-Inspired Materials | 4 KP | 3G | A. R. Studart, I. Burgert, R. Nicolosi Libanori, G. Panzarasa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The aim of this course is to impart knowledge on the underlying principles governing the design of biological materials and on strategies to fabricate synthetic model systems whose structural organization resembles those of natural materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course first offers a comprehensive introduction to evolutive aspects of materials design in nature and a general overview about the most common biopolymers and biominerals found in biological materials. Next, current approaches to fabricate bio-inspired materials are presented, followed by a detailed evaluation of their structure-property relationships with focus on mechanical, optical, surface and adaptive properties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course is structured in 3 blocks: Block (I): Fundamentals of engineering in biological materials - Biological engineering principles - Basic building blocks found in biological materials Block (II): Replicating biological design principles in synthetic materials - Biological and bio-inspired materials: polymer-reinforced and ceramic-toughened composites - Lightweight biological and bio-inspired materials - Functional biological and bio-inspired materials: surfaces, self-healing and adaptive materials Block (III): Bio-inspired design and systems - Mechanical actuation - plant systems - Bio-inspiration in the built environment | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Copies of the slides will be made available for download before each lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | The course is mainly based on the books listed below. Additional references will be provided during the lectures. 1. M. A. Meyers and P-Y. Chen; Biological Materials Science - Biological Materials, Bioinspired Materials and Biomaterials. (Cambridge University Press, 2014). 2. P. Fratzl, J. W. C. Dunlop and R. Weinkamer; Materials Design Inspired by Nature: Function Through Inner Architecture. (The Royal Society of Chemistry, 2013). 3. A. R. Studart, R. Libanori, R. M. Erb, Functional Gradients in Biological Composites in Bio- and Bioinspired Nanomaterials. (Wiley-VCH Verlag GmbH & Co. KGaA, 2014), pp. 335-368. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
|