André R. Studart: Katalogdaten im Herbstsemester 2016

NameHerr Prof. Dr. André R. Studart
LehrgebietKomplexe Materialien
Adresse
Complex Materials
ETH Zürich, HCI G 537
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telefon+41 44 633 70 50
Fax+41 44 633 15 45
E-Mailandre.studart@mat.ethz.ch
DepartementMaterialwissenschaft
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
327-0301-00LMaterialwissenschaft I3 KP3GJ. F. Löffler, A. R. Studart, P. Uggowitzer
KurzbeschreibungGrundlegende Konzepte der Metallphysik, Keramik, Polymere und ihre Technologie.
LernzielAufbauend auf der Vorlesung Einführung in die Materialwissenschaft soll ein vertieftes Verständnis wichtiger Aspekte der Materialwissenschaft erlangt werden, mit besonderer Betonung der metallischen und keramischen Werkstoffe.
InhaltAm Beispiel der Metalle werden Thermodynamik und Phasendiagramme, Grenzflächen und Mikrostruktur, Diffusionskontrollierte Umwandlungen in Festkörpern und diffusionslose Umwandlungen besprochen. Am Beispiel der keramischen Werkstoffe werden die Grundregeln der ionischen und kovalenten chemischen Bindung, ihre Energien, der kristalline Aufbau, Beispiele wichtiger Strukturkeramiken und der Aufbau und die Eigenschaften oxidischer Gläser und Glaskeramiken vorgestellt.
SkriptFür Metalle siehe
http://www.metphys.mat.ethz.ch/education/lectures/materialwissenschaft-i.html

Für Keramiken siehe:
http://www.complex.mat.ethz.ch/education/lectures.html
LiteraturMetalle:
D. A. Porter, K. E. Easterling
Phase Transformations in Metals and Alloys - Second Edition
ISBN : 0-7487-5741-4
Nelson Thornes

Keramiken:
- Munz, D.; Fett, T: Ceramics, Mechanical Properties, Failure Behaviour, Materials Selection,
- Askeland & Phulé: Science and Engineering of Materials, 2003
- diverse CEN ISO Standards given in the slides
- Barsoum MW: Fundamentals of Ceramics:
- Chiang, Y.M.; Dunbar, B.; Kingery, W.D; Physical Ceramics, Principles für Ceramic Science and Engineering. Wiley , 1997
- Hannik, Kelly, Muddle: Transformation Toughening in Zirconia Containing Ceramics, J Am Ceram Soc 83 [3] 461-87 (2000)
- "High-Tech Ceramics: viewpoints and perspectives", ed G. Kostorz, Academic Press, 1989. Chapter 5, 59-101.


- "Brevieral Ceramics" published by the "Verband der Keramischen Industrie e.V.", ISBN 3-924158-77-0. partly its contents may be found in the internet @ http://www.keramverband.de/brevier_engl/brevier.htm or on our homepage

- Silicon-Based Structural Ceramics (Ceramic Transactions), Stephen C. Danforth (Editor), Brian W. Sheldon, American Ceramic Society, 2003,

- Silicon Nitride-1, Shigeyuki Somiya (Editor), M. Mitomo (Editor), M. Yoshimura (Editor), Kluwer Academic Publishers, 1990 3. Zirconia and Zirconia Ceramics. Second Edition, Stevens, R, Magnesium Elektron Ltd., 1986, pp. 51, 1986

- Stabilization of the tetragonal structure in zirconia microcrystals, RC Garvie, The Journal of Physical Chemistry, 1978

- Phase relationships in the zirconia-yttria system, HGM Scott - Journal of Materials Science, 1975, Springer

- Thommy Ekström and Mats Nygren, SiAION Ceramics J Am Cer Soc Volume 75 Page 259 - February 1992

- "Formation of beta -Si sub 3 N sub 4 solid solutions in the system Si, Al, O, N by reaction sintering--sintering of an Si sub 3 N sub 4 , AlN, Al sub 2 O sub 3 mixture" Boskovic, L J; Gauckler, L J, La Ceramica (Florence). Vol. 33, no. N-2, pp. 18-22. 1980.

- Alumina: Processing, Properties, and Applications, Dorre, E; Hubner, H, Springer-Verlag, 1984, pp. 329, 1984 9.
Voraussetzungen / Besonderes- Im ersten Teil der Vorlesung werden die Grundlagen zu den Metallen vermittelt. Im zweiten Teil diese zu den keramischen Werkstoffen.
- Ein Teil der Vorlesung wird in Englisch gehalten.
327-0503-AALCeramics I
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
3 KP6RM. Niederberger, T. Graule, A. R. Studart
KurzbeschreibungIntroduction to ceramic processing
LernzielThe aim is the understanding of the basic principles of ceramic processing.
InhaltBasic chemical processes for powder production.
Liquid-phase synthesis methods.
Sol-Gel processes.
Classical crystallization theory.
Gas phase reactions.
Basics of the collidal chemistry for suspension preparation and control.
Characterization techniques for powders and colloids.
Shaping techniques for bulk components and thin films.
Sintering processes and microstructural control.
SkriptSee:
http://www.multimat.mat.ethz.ch/education/lectures/ceramics.html
LiteraturBooks and references will be provided on the lecture notes.
327-0503-00LKeramik I3 KP2V + 1UM. Niederberger, T. Graule, A. R. Studart
KurzbeschreibungEinführung in die Methoden der Keramik Herstellung.
LernzielZiel ist die Grundlagen und Beispiele für keramische Herstellverfahren zu erarbeiten.
InhaltGrundlagen der Herstellung keramischer Pulver.
Nasschemische Synthesemethoden.
Sol-Gel Prozesse.
Klassische Kristallisationstheorie.
Gasphasenprozesse.
Grundlagen der Kolloidchemie zur Herstellung und Behandlung von Suspensionen.
Untersuchungstechniken für Pulver und Kolloide.
Formgebungsmethoden für keramische Bauteile und Schichten.
Sinterprozesse und Entwicklung der Gefüge.
SkriptSiehe:
http://www.multimat.mat.ethz.ch/education/lectures/ceramics.html
LiteraturZusätzliche Literatur ist auf den Vorlesungsunterlagen angegeben.
327-0603-AALCeramics II Information
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
3 KP6RA. R. Studart, K. Conder
KurzbeschreibungUnderstanding of the electrical, dielectric and optical properties of functional ceramics for materials engineers, physicists and electrical engineers. An introduction is given to modern ceramics materials with multiple functions.
LernzielCeramics II covers the basic principles of functional ceramics such as linear and non-linear dielectrics, semiconductors, ionic and mixed ionic-electronic conductors as well as materials aspects of high temperature superconductors. Examples of applications cover the range from piezo-, pyro and opto-electronic materials over sensors and solid oxide fuel cells to squids and fault current limiters with superconducting compounds.
At the end of the course, the students should be able to select the chemistry, design the microstructure and devise processing routes to fabricate functional ceramics for electronic, electromechanical, optical and magnetic applications.
Inhalt- Applications of functional ceramics
- Dieletrics fundamentals & insulators
- Capacitors & resonators
- Ferroelectricity & piezoelectricity
- Pyroelectricity and electro-optic ceramics
- Defect chemistry
- Conductors
- Impedance spectroscopy
- Magnetic ceramics
- Superconductors
SkriptSee:
https://www.complex.mat.ethz.ch/education/courses/ceramics2
LiteraturElectroceramics; J.A.Moulson
Free download of the book in ETH domain is possible following the link:
http://www3.interscience.wiley.com/cgi-bin/booktoc/104557643

Principles of Electronic Ceramics; L.L.Hench, J.K.West
327-1221-00LBiological and Bio-Inspired Materials Information
Students that already enroled in this course during their Bachelor's degree studies are not allowed to enrol again in their Master's.
3 KP3GA. R. Studart, I. Burgert, E. Cabane, R. Nicolosi Libanori
KurzbeschreibungThe aim of this course is to impart knowledge on the underlying principles governing the design of biological materials and on strategies to fabricate synthetic model systems whose structural organization resembles those of natural materials.
LernzielThe course first offers a comprehensive introduction to evolutive aspects of materials design in nature and a general overview about the most common biopolymers and biominerals found in biological materials. Next, current approaches to fabricate bio-inspired materials are presented, followed by a detailed evaluation of their structure-property relationships with focus on mechanical, optical, surface and adaptive properties.
InhaltThis course is structured in 3 blocks:
Block (I): Fundamentals of engineering in biological materials
- Biological engineering principles
- Basic building blocks found in biological materials

Block (II): Replicating biological design principles in synthetic materials
- Biological and bio-inspired materials: polymer-reinforced and ceramic-toughened composites
- Lightweight biological and bio-inspired materials
- Functional biological and bio-inspired materials: surfaces, self-healing and adaptive materials

Block (III): Bio-inspired design and systems
- Bio-inspiration in the building environment
- Future developments in bio-inspired materials
SkriptCopies of the slides will be made available for download before each lecture.
LiteraturThe course is mainly based on the books listed below. Additional references will be provided during the lectures.

1. M. A. Meyers and P-Y. Chen; Biological Materials Science - Biological Materials, Bioinspired Materials and Biomaterials. (Cambridge University Press, 2014).
2. P. Fratzl, J. W. C. Dunlop and R. Weinkamer; Materials Design Inspired by Nature: Function Through Inner Architecture. (The Royal Society of Chemistry, 2013).
3. A. R. Studart, R. Libanori, R. M. Erb, Functional Gradients in Biological Composites in Bio- and Bioinspired Nanomaterials. (Wiley-VCH Verlag GmbH & Co. KGaA, 2014), pp. 335-368.