Erich Walter Farkas: Catalogue data in Autumn Semester 2019 |
Name | Prof. Dr. Erich Walter Farkas (Professor Universität Zürich (UZH)) |
Address | Lehre Mathematik Plattenstrasse 14 8032 Zürich SWITZERLAND |
Telephone | +41 44 634 39 53 |
Fax | +41 44 634 43 45 |
farkas@math.ethz.ch | |
URL | http://www.math.ethz.ch/~farkas |
Department | Mathematics |
Relationship | Lecturer |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
401-0293-00L | Mathematics III ![]() | 3 credits | 2V + 1U | E. W. Farkas | |
Abstract | Vertiefung der mehrdimensionalen Analysis mit Schwerpunkt in der Anwendung der partiellen Differentialgleichungen, Vertiefung der Linearen Algebra und Einführung in die Systemanalyse und Modellbildung. | ||||
Learning objective | Vertiefung und Ausbau des Stoffes der Vorlesungen Mathematik I/II für die Anwendung in der Systemanalyse. | ||||
Content | Fourier-Reihen - Euklidische Vektorräume, Skalarprodukt, Orthogonalität - Entwicklung einer periodischen Funktion in eine Fourier-Reihe - Komplexe Darstellung - Anwendungen zur Lösung gewöhnlicher Differentialgleichungen, Reihenansätze. Systeme linearer Differentialgleichungen 1. Ordnung - Lineare Algebra (Repetition), - Definition, allgemeine Lösungsmenge, Fundamentalsystem - Bestimmung von Lösungen mittels Eigenvektoren, Fundamental- system im diagonalisierbaren Fall - Exponential einer Matrix - homogene lineare Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten. Mathematische Modelle - Begriffsbildung: (mathematisches) Modell, einführende Beispiele - Lineare Kompartiment-Modelle (Box-Modelle) Laplace-Transformation - Grundbegriffe: Definition der Laplace-Transformation und Rück- transformation, Konvergenz des Laplace-Integrals - Eigenschaften der Laplace-Transformation - Anwendungen der Laplace-Transformation zur Lösung linearer Differentialgleichungen mit konstanten Koeffizienten. Partielle Differentialgleichungen - Definition, Randbedingungen, Anfangsbedingungen - Diffusionsgleichung: Herleitung, Lösung an einfachen Beispielen - Techniken: Separationsansätze, Basislösungen, Superpositionsprinzip - Laplace-Gleichung: Lösung einfacher Randwertprobleme, Polar- form, Poisson-Formel, harmonische Funktionen. | ||||
Lecture notes | Siehe Lernmaterial > Literatur | ||||
Literature | Siehe Lernmaterial > Literatur - Papula, L., Mathematik für Ingenieure und Naturwissenschaftler, Band 2, Vieweg und Teubner (2015), Kapitel 2 über Fourierreihen und Kapitel 4 über Partielle Differentialgleichungen - Imboden, D. und S. Koch, Systemanalyse - Einführung in die mathematische Modellierung natürlicher Systeme. Berlin, Heidelberg: Springer (2008) - A'Campo-Neuen, A., Skript über Gekoppelte Differentialgleichungen | ||||
Prerequisites / Notice | Vorlesungen Mathematik I/II | ||||
401-3913-01L | Mathematical Foundations for Finance ![]() | 4 credits | 3V + 2U | E. W. Farkas | |
Abstract | First introduction to main modelling ideas and mathematical tools from mathematical finance | ||||
Learning objective | This course gives a first introduction to the main modelling ideas and mathematical tools from mathematical finance. It mainly aims at non-mathematicians who need an introduction to the main tools from stochastics used in mathematical finance. However, mathematicians who want to learn some basic modelling ideas and concepts for quantitative finance (before continuing with a more advanced course) may also find this of interest.. The main emphasis will be on ideas, but important results will be given with (sometimes partial) proofs. | ||||
Content | Topics to be covered include - financial market models in finite discrete time - absence of arbitrage and martingale measures - valuation and hedging in complete markets - basics about Brownian motion - stochastic integration - stochastic calculus: Itô's formula, Girsanov transformation, Itô's representation theorem - Black-Scholes formula | ||||
Lecture notes | Lecture notes will be sold at the beginning of the course. | ||||
Literature | Lecture notes will be sold at the beginning of the course. Additional (background) references are given there. | ||||
Prerequisites / Notice | Prerequisites: Results and facts from probability theory as in the book "Probability Essentials" by J. Jacod and P. Protter will be used freely. Especially participants without a direct mathematics background are strongly advised to familiarise themselves with those tools before (or very quickly during) the course. (A possible alternative to the above English textbook are the (German) lecture notes for the standard course "Wahrscheinlichkeitstheorie".) For those who are not sure about their background, we suggest to look at the exercises in Chapters 8, 9, 22-25, 28 of the Jacod/Protter book. If these pose problems, you will have a hard time during the course. So be prepared. |