Erich Walter Farkas: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Erich Walter Farkas
(Professor Universität Zürich (UZH))
Address
Lehre Mathematik
Plattenstrasse 14
8032 Zürich
SWITZERLAND
Telephone+41 44 634 39 53
Fax+41 44 634 43 45
E-mailfarkas@math.ethz.ch
URLhttp://www.math.ethz.ch/~farkas
DepartmentMathematics
RelationshipLecturer

NumberTitleECTSHoursLecturers
401-0291-00LMathematics I6 credits4V + 2UE. W. Farkas
AbstractMathematics I/II is an introduction to one- and multidimensional calculus
and linear algebra emphasizing on applications.
Learning objectiveStudents understand mathematics as a language for modeling and as a tool for
solving practical problems in natural sciences.
Students can analyze models, describe solutions qualitatively or calculate
them explicitly if need be. They can solve examples as well as their practical
applications manually and using computer algebra systems.
ContentEinführung in die Differential- und Integralrechnung von Funktionen einer Variablen und Anwendungen:

Funktionen. Stetigkeit. Differentialrechnung. Anwendungen der Differentialrechnung. Integralrechnung. Potenzreihen. Komplexe Zahlen. Matrizen.
LiteratureSiehe Lernmaterialien > Literatur

L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, 11. Auflage, Vieweg und Teubner

Th. Wihler, Mathematik für Naturwissenschaften, 2 Bände:
Einführung in die Analysis, Einführung in die Lineare Algebra;
Haupt-Verlag Bern, UTB

Ch. Blatter, Lineare Algebra; VDF

H. H. Storrer: Einführung in die mathematische Behandlung der Naturwissenschaften I; Birkhäuser.
Prerequisites / NoticeDie Einschreibung in die Übungsgruppen erfolgt online.
Alle unter http://mystudies.ethz.ch/ für die Vorlesung eingeschriebenen Studierenden können sich unter https://echo.ethz.ch/ in eine Übungsgruppe einschreiben.

Der Zugang zu den Übungsserien erfolgt online.
Vorlesungsverzeichnis > Lernmaterialien > Material zur Vorlesung
401-3913-01LMathematical Foundations for Finance4 credits3V + 2UE. W. Farkas, M. Schweizer
AbstractFirst introduction to main modelling ideas and mathematical tools from mathematical finance
Learning objectiveThis course gives a first introduction to the main modelling ideas and mathematical tools from mathematical finance. It aims at a double audience: mathematicians who want to learn the modelling ideas and concepts for finance, and non-mathematicians who need an introduction to the main tools from stochastics used in mathematical finance. The main emphasis will be on ideas, but important results will be given with (sometimes partial) proofs.
ContentTopics to be covered include

- financial market models in finite discrete time
- absence of arbitrage and martingale measures
- valuation and hedging in complete markets
- basics about Brownian motion
- stochastic integration
- stochastic calculus: Itô's formula, Girsanov transformation, Itô's representation theorem
- Black-Scholes formula
Lecture notesLecture notes will be sold at the beginning of the course.
LiteratureLecture notes will be sold at the beginning of the course. Additional (background) references are given there.
Prerequisites / NoticePrerequisites: Results and facts from probability theory as in the book "Probability Essentials" by J. Jacod and P. Protter will be used freely. Especially participants without a direct mathematics background are strongly advised to familiarise themselves with those tools before (or very quickly during) the course. (A possible alternative to the above English textbook are the (German) lecture notes for the standard course "Wahrscheinlichkeitstheorie".)

For those who are not sure about their background, we suggest to look at the exercises in Chapters 8, 9, 22-25, 28 of the Jacod/Protter book. If these pose problems, you will have a hard time during the course. So be prepared.