Frank Schweitzer: Katalogdaten im Frühjahrssemester 2018

NameHerr Prof. Dr. Frank Schweitzer
Professur für Systemgestaltung
ETH Zürich, WEV G 211
Weinbergstr. 56/58
8092 Zürich
Telefon+41 44 632 83 50
Fax+41 44 632 18 80
DepartementManagement, Technologie und Ökonomie
BeziehungOrdentlicher Professor

363-0543-00LAgent-Based Modelling of Social Systems Information 3 KP2V + 1UF. Schweitzer
KurzbeschreibungAgent-based modeling is introduced as a bottom-up approach to understand the complex dynamics of social systems. The course is based on formal models of agents and their interactions. Computer simulations using Python allow the quantitative analysis of a wide range of social phenomena, e.g. cooperation and competition, opinion dynamics, spatial interactions and behaviour in social networks.
LernzielA successful participant of this course is able to
- understand the rationale of agent-based models of social systems
- understand the relation between rules implemented at the individual level and the emerging behavior at the global level
- learn to choose appropriate model classes to characterize different social systems
- grasp the influence of agent heterogeneity on the model output
- efficiently implement agent-based models using Python and visualize the output
InhaltThis full-featured course on agent-based modeling (ABM) allows participants with no prior expertise to understand concepts, methods and tools of ABM, to apply them in their master or doctoral thesis. We focus on a formal description of agents and their interactions, to allow for a suitable implementation in computer simulations. Given certain rules for the agents, we are interested to model their collective dynamics on the systemic level.

Agent-based modeling is introduced as a bottom-up approach to understand the complex dynamics of social systems.
Agents represent the basic constituents of such systems. The are described by internal states or degrees of freedom (opinions, strategies, etc.), the ability to perceive and change their environment, and the ability to interact with other agents. Their individual (microscopic) actions and interactions with other agents, result in macroscopic (collective, system) dynamics with emergent properties, which we want to understand and to analyze.

The course is structured in three main parts. The first two parts introduce two main agent concepts - Boolean agents and Brownian agents, which differ in how the internal dynamics of agents is represented. Boolean agents are characterized by binary internal states, e.g. yes/no opinion, while Brownian agents can have a continuous spectrum of internal states, e.g. preferences and attitudes. The last part introduces models in which agents interact in physical space, e.g. migrate or move collectively.

Throughout the course, we will discuss a wide variety of application areas, such as:
- opinion dynamics and social influence,
- cooperation and competition,
- online social networks,
- systemic risk
- emotional influence and communication
- swarming behavior
- spatial competition

While the lectures focus on the theoretical foundations of agent-based modeling, weekly exercise classes provide practical skills. Using the Python programming language, the participants implement agent-based models in guided and in self-chosen projects, which they present and jointly discuss.
SkriptThe lecture slides will be available on the Moodle platform, for registered students only.
LiteraturSee handouts. Specific literature is provided for download, for registered students only.
Voraussetzungen / BesonderesParticipants of the course should have some background in mathematics and an interest in formal modeling and in computer simulations, and should be motivated to learn about social systems from a quantitative perspective.

Prior knowledge of Python is not necessary.

Self-study tasks are provided as home work for small teams (2-4 members).
Weekly exercises (45 min) are used to discuss the solutions and guide the students.

The examination will account for 70% of the grade and will be conducted electronically. The "closed book" rule applies: no books, no summaries, no lecture materials. The exam questions and answers will be only in English. The use of a paper-based dictionary is permitted.
The group project to be handed in at the beginning of July will count 30% to the final grade.
364-1058-00LRisk Center Seminar Series Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 50
0 KP2SA. Bommier, D. Basin, D. N. Bresch, L.‑E. Cederman, P. Cheridito, P. Embrechts, H. Gersbach, H. R. Heinimann, M. Larsson, W. Mimra, G. Sansavini, F. Schweitzer, D. Sornette, B. Stojadinovic, B. Sudret, U. A. Weidmann, S. Wiemer, M. Zeilinger, R. Zenklusen
KurzbeschreibungThis course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling and governing complex socio-economic systems, and managing risks and crises. Students and other guests are welcome.
LernzielParticipants should learn to get an overview of the state of the art in the field, to present it in a well understandable way to an interdisciplinary scientific audience, to develop novel mathematical models and approaches for open problems, to analyze them with computers or other means, and to defend their results in response to critical questions. In essence, participants should improve their scientific skills and learn to work scientifically on an internationally competitive level.
InhaltThis course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling complex socio-economic systems and crises. For details of the program see the webpage of the seminar. Students and other guests are welcome.
SkriptThere is no script, but the sessions will be recorded and be made available. Transparencies of the presentations may be put on the course webpage.
LiteraturLiterature will be provided by the speakers in their respective presentations.
Voraussetzungen / BesonderesParticipants should have relatively good scientific, in particular mathematical skills and some experience of how scientific work is performed.