Marcy Zenobi-Wong: Katalogdaten im Frühjahrssemester 2021 |
Name | Frau Prof. Dr. Marcy Zenobi-Wong |
Lehrgebiet | Knorpeltechnologie und -regeneration |
Adresse | Gewebetechnol. und Biofabrikation ETH Zürich, HPL J 22 Otto-Stern-Weg 7 8093 Zürich SWITZERLAND |
Telefon | +41 44 632 50 89 |
marcy.zenobi@hest.ethz.ch | |
URL | https://biofabrication.ethz.ch/ |
Departement | Gesundheitswissenschaften und Technologie |
Beziehung | Ordentliche Professorin |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
376-0008-00L | Vertiefung Physiologie und Pathophysiologie Nur für Gesundheitswissenschaften und Technologie BSc. | 4 KP | 4V | K. De Bock, O. Bar-Nur, M. Detmar, G. A. Kuhn, M. Ristow, G. Schratt, C. Spengler, C. Wolfrum, M. Zenobi-Wong | |
Kurzbeschreibung | Vertiefende Theorie zu molekularen und pathophysiologischen Aspekten von Nerven, Muskeln, Herz, Kreislauf, Atmung und Sinnesorganen. | ||||
Lernziel | Vertiefendes Wissen über Anatomie und Physiologie. | ||||
Inhalt | Molekulare Grundlagen von physiologischen Prozessen, Prozesse der Krankheitsentwicklung. | ||||
Voraussetzungen / Besonderes | Der Kurs wird in Deutsch und Englisch gehalten | ||||
376-1614-00L | Principles in Tissue Engineering | 3 KP | 2V | K. Maniura, M. Rottmar, M. Zenobi-Wong | |
Kurzbeschreibung | Fundamentals in blood coagulation; thrombosis, blood rheology, immune system, inflammation, foreign body reaction on the molecular level and the entire body are discussed. Applications of biomaterials for tissue engineering in different tissues are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed. | ||||
Lernziel | Understanding of molecular aspects for the application of biodegradable and biocompatible Materials. Fundamentals of tissue reactions (eg. immune responses) against implants and possible clinical consequences will be discussed. | ||||
Inhalt | This class continues with applications of biomaterials and devices introduced in Biocompatible Materials I. Fundamentals in blood coagulation; thrombosis, blood rheology; immune system, inflammation, foreign body reaction on the level of the entire body and on the molecular level are introduced. Applications of biomaterials for tissue engineering in the vascular system, skeletal muscle, heart muscle, tendons and ligaments, bone, teeth, nerve and brain, and drug delivery systems are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed. | ||||
Skript | Handouts provided during the classes and references therin. | ||||
Literatur | The molecular Biology of the Cell, Alberts et al., 5th Edition, 2009. Principles in Tissue Engineering, Langer et al., 2nd Edition, 2002 | ||||
376-1624-00L | Practical Methods in Biofabrication Number of participants limited to 12. | 5 KP | 4P | M. Zenobi-Wong, S. J. Ferguson, S. Schürle-Finke | |
Kurzbeschreibung | Biofabrication involves the assembly of materials, cells, and biological building blocks into grafts for tissue engineering and in vitro models. The student learns techniques involving the fabrication and characterization of tissue engineered scaffolds and the design of 3D models based on medical imaging data. They apply this knowledge to design, manufacture and evaluate a biofabricated graft. | ||||
Lernziel | The objective of this course is to give students hands-on experience with the tools required to fabricate tissue engineered grafts. During the first part of this course, students will gain practical knowledge in hydrogel synthesis and characterization, fuse deposition modelling and stereolithography, bioprinting and bioink design, electrospinning, and cell culture and viability testing. They will also learn the properties of common biocompatible materials used in fabrication and how to select materials based on the application requirements. The students learn principles for design of 3D models. Finally the students will apply their knowledge to a problem-based Project in the second half of the Semester. The Project requires significant time outside of class Hours, strong commitment and ability to work independently. | ||||
Voraussetzungen / Besonderes | Not recommended if passed 376-1622-00 Practical Methods in Tissue Engineering | ||||
376-1714-AAL | Biocompatible Materials Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 4 KP | 9R | K. Maniura, M. Zenobi-Wong | |
Kurzbeschreibung | Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced. | ||||
Lernziel | The course covers the follwing topics: 1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. 4. Introduction to different material classes in use for medical applications. | ||||
Inhalt | Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics. | ||||
Skript | Handouts are deposited online (moodle). | ||||
Literatur | Literature: - Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013 - Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011 (available online via ETH library) Handouts and references therin. | ||||
376-1974-00L | Colloquium in Biomechanics | 2 KP | 2K | B. Helgason, S. J. Ferguson, R. Müller, J. G. Snedeker, W. R. Taylor, M. Zenobi-Wong | |
Kurzbeschreibung | Current topics in biomechanics presented by speakers from academia and industry. | ||||
Lernziel | Getting insight into actual areas and problems of biomechanics. |