Rudolf Aebersold: Catalogue data in Autumn Semester 2018 |
Name | Prof. Dr. Rudolf Aebersold |
Field | Systembiologie |
aebersold@imsb.biol.ethz.ch | |
Department | Biology |
Relationship | Professor emeritus |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
551-0003-AAL | General Biology I+II Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 7 credits | 13R | U. Sauer, R. Aebersold, W. Gruissem, O. Y. Martin, A. Widmer | |
Abstract | General Biology I: Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny. General Biology II: Molecular biology approach to teach the basic principles of biochemistry, cell biology, cgenetics, evolutionary biology and form and function of vacular plants. | ||||
Learning objective | General Biology I: The understanding of basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life. General Biology II: The understanding basic concepts of biology: the hierarchy of the structural levels of biological organisation, with particular emphasis on the cell and its molecular functions, the fundamentals of metabolism and molecular genetics, as well as form and function of vascular plants. | ||||
Content | General Biology I: General Biology I focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34. Week 1-7 by Alex Widmer, Chapters 12-25 12 Cell biology Mitosis 13 Genetics Sexual life cycles and meiosis 14 Genetics Mendelian genetics 15 Genetics Linkage and chromosomes 20 Genetics Evolution of genomes 21 Evolution How evolution works 22 Evolution Phylogentic reconstructions 23 Evolution Microevolution 24 Evolution Species and speciation 25 Evolution Macroevolution Week 8-14 by Oliver Martin, Chapters 26-34 26 Diversity of Life Introdution to viruses 27 Diversity of Life Prokaryotes 28 Diversity of Life Origin & evolution of eukaryotes 29 Diversity of Life Nonvascular&seedless vascular plants 30 Diversity of Life Seed plants 31 Diversity of Life Introduction to fungi 32 Diversity of Life Overview of animal diversity 33 Diversity of Life Introduction to invertebrates 34 Diversity of Life Origin & evolution of vertebrates General Biology II: The structure and function of biomacromolecules; basics of metabolism; tour of the cell; membrane structure and function; basic energetics of cellular processes; respiration, photosynthesis; cell cycle, from gene to protein; structure and growth of vascular plants, resource acquisition and transport, soil and plant nutrition. Specifically the following Campbell chapters will be covered: 3 Biochemistry Chemistry of water 4 Biochemistry Carbon: the basis of molecular diversity 5 Biochemistry Biological macromolecules and lipids 7 Cell biology Cell structure and function 8 Cell biology Cell membranes 10 Cell biology Respiration: introduction to metabolism 10 Cell biology Cell respiration 11 Cell biology Photosynthetic processes 16 Genetics Nucleic acids and inheritance 17 Genetics Expression of genes 18 Genetics Control of gene expression 19 Genetics DNA Technology 35 Plant structure&function Plant Structure and Growth 36 Plant structure&function Transport in vascular plants 37 Plant structure&function Plant nutrition 38 Plant structure&function Reproduction of flowering plants 39 Plant structure&function Plants signal and behavior | ||||
Lecture notes | No script | ||||
Literature | Campbell et al. (2015) Biology - A Global Approach. 10th Edition (Global Edition) | ||||
Prerequisites / Notice | Basic general and organic chemistry This is a virtual self-study lecture for non-German speakers of the "Allgemeine Biology I (551-0001-00L) and "Allgemeine Biology II (551-0002-00L) lectures. The exam will be written jointly with the participants of this lecture. | ||||
551-1003-00L | Methods of Biological Analysis | 3 credits | 3G | R. Aebersold, M. Badertscher, K. Weis | |
Abstract | 529-1042-00 Principles of the most important separation techniques and the interpretation of molecular spectra. 551-1003-00 The course will teach the basis and typical applications of methods for the analysis of nucleic acid sequences, mass spectrometric analysis of proteins and proteomes and advanced light and fluorescent imaging methods. | ||||
Learning objective | 529-1042-00 Knowledge of the necessary basics and the possibilities of application of the relevant spectroscopical and separation methods in analytical chermistry. 551-1003-00 Knowledge of the theoretical basis of the methods for nucleic acid sequence analysis, mass spectrometry based protein and proteome analysis and advanced light and fluorescent imaging methods, and an understanding of the application of these principles in experimental biology. | ||||
Content | 529-1042-00 Application oriented basics of instrumental analysis in organic chemistry and the empirical employment of the methods of structure elucidation (mass spectrometry, NMR-, IR-, UV/VIS spectroscopy). Basics and application of chromatographic and electrophoretic separation methods. Application of the knowledge by practising. 551-1003-00 The course will consist of lectures covering the theoretical and technical base of the respective analytical methods and of exercises where typical applications of the methods in modern experimental biology are discussed. | ||||
Lecture notes | 529-1042-00 A comprehensive script is available in the HCI-Shop. A summary of the part "Spektroskopie" defines the relevant material for the exam. 551-1003-00 Materials supporting the lectures and exercises will be made available via Moodle. | ||||
Literature | 529-1042-00 - Pretsch E., Bühlmann P., Badertscher M. Structure Determination of Organic Compounds, 5th revised and enlarged English edition, Springer-Verlag, Berlin 2009; - Pretsch E., Bühlmann P., Badertscher M., Spektroskopische Daten zur Strukturaufklärung organischer Verbindungen, fünfte Auflage, Springer-Verlag, Berlin 2010; - D.A. Skoog, J.J. Leary, Instrumentelle Analytik, Grundlagen, Geräte, Anwendungen, Springer, Berlin, 1996; - K. Cammann, Instrumentelle Analytische Chemie, Verfahren, Anwendungen, Qualitätssicherung, Spektrum Akademischer Verlag, Heidelberg, 2001; - R. Kellner, J.-M. Mermet, M. Otto, H.M. Widmer, Analytical Chemistry, Wiley-VCH Verlag, Weinheim, 1998; - K. Robards, P.R.Haddad, P.E. Jackson, Principles and practice of modern chromatographic methods, Academic Press, London, 1994; | ||||
Prerequisites / Notice | 529-1042-00 Prerequisites: - 529-1001-01 V "Allgemeine Chemie I (für Biol./Pharm.Wiss.)" - 529-1001-00 P "Allgemeine Chemie I (für Biol./Pharm.Wiss.)" - 529-1011-00 G "Organische Chemie I (für Biol./Pharm.Wiss.)" | ||||
551-1159-00L | Molecular Systems Biology | 0 credits | 1K | U. Sauer, R. Aebersold | |
Abstract | Seminar series on current research topics in systems biology | ||||
Learning objective | An overview of systesm biology research | ||||
Content | Seminar series on current research topics in systems biology | ||||
Lecture notes | none | ||||
Literature | none |