Rudolf Aebersold: Catalogue data in Spring Semester 2017

Name Prof. Dr. Rudolf Aebersold
FieldSystembiologie
E-mailaebersold@imsb.biol.ethz.ch
DepartmentBiology
RelationshipProfessor emeritus

NumberTitleECTSHoursLecturers
551-0002-AALGeneral Biology II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
4 credits6RU. Sauer, R. Aebersold, W. Gruissem
AbstractBasics of biochemistry (macromolecules, membranes, cellular structures, metabolism), molecular genetics (gene expression and its regulation; from gene to protein), and physiology of higher plants (structure, growth, development, nutrition, transport, reproduction)
ObjectiveThe understanding of basic concepts of molecular biology and physiology.
ContentHow cells function at the level of molecules and higher structures.
Molecular processes during gene expression.
Plant physiology.

The following Campbell chapters will be covered:

Week 1-5: Prof. Sauer
5 Biological macromolecules and lipids
7 Cell structure and function
8 Cell membranes
10 Respiration: introduction to metabolism
10 Cell respiration
11 Photosynthetic processes

Week 6-9: Prof. Aebersold
16 Nucleic acids and inheritance
17 Expression of genes
18 Control of gene expression
19 DNA Technology

Week 9-13: Prof. Gruissem
35 Plant Structure and Growth
36 Transport in vascular plants
37 Plant nutrition
38 Reproduction of flowering plants
39 Plants signal and behavior
Lecture notesNo script
LiteratureCampbell, Reece et al: "Biologie" (10th global edition); Pearson 2015.
Prerequisites / NoticeBasic general and organic chemistry
551-0002-00LGeneral Biology II Restricted registration - show details 4 credits4GU. Sauer, R. Aebersold, W. Gruissem
AbstractBasics of biochemistry (macromolecules, membranes, cellular structures, metabolism), molecular genetics (gene expression and its regulation; from gene to protein), and physiology of higher plants (structure, growth, development, nutrition, transport, reproduction)
ObjectiveThe understanding of basic concepts of molecular biology and physiology.
ContentHow cells function at the level of molecules and higher structures.
Molecular processes during gene expression.
Plant physiology.

The following Campbell chapters will be covered:

Week 1-5: Prof. Sauer
5 Biological macromolecules and lipids
7 Cell structure and function
8 Cell membranes
10 Respiration: introduction to metabolism
10 Cell respiration
11 Photosynthetic processes

Week 6-9: Prof. Aebersold
16 Nucleic acids and inheritance
17 Expression of genes
18 Control of gene expression
19 DNA Technology

Week 9-13: Prof. Gruissem
35 Plant Structure and Growth
36 Transport in vascular plants
37 Plant nutrition
38 Reproduction of flowering plants
39 Plants signal and behavior
Lecture notesNo script
LiteratureCampbell, Reece et al: "Biologie" (10th global edition); Pearson 2015.
551-0224-00LAdvanced Proteomics Restricted registration - show details
For master students from the 2nd semester on, also doctoral candidates and post docs.
4 credits6GR. Aebersold
AbstractGoal of the course is to analyze current and newly emerging technologies and approaches in protein and proteome analysis with regard to their application in biology, biotechnology and medicine.
Format: Introduction by instructor followed by discussions stimulated by reading assignments and exercises.
ObjectiveTo discuss current and newly emerging technologies and approaches in protein and proteome analysis with regard to their applications in biology, biotechnology, medicine and systems biology.
ContentBlock course teaching current methods for the acquisition and processing of proteomic datasets.
Prerequisites / NoticeNumber of people: Not exceeding 30.
Students from ETHZ, Uni Zurich and University of Basel
Non-ETH students must register at ETH Zurich as special students http://www.rektorat.ethz.ch/students/admission/auditors/index_EN
551-0324-00LSystems Biology6 credits4VR. Aebersold, B. Christen, M. Claassen, E. Hafen, U. Sauer
AbstractIntroduction to experimental and computational methods of systems biology. By using baker’s yeast as a thread through the series, we focus on global methods for analysis of and interference with biological functions. Illustrative applications to other organisms will highlight medical and biotechnological aspects.
Objective- obtain an overview of global analytical methods
- obtain an overview of computational methods in systems biology
- understand the concepts of systems biology
ContentOverview of global analytical methods (e.g. DNA arrays, proteomics, metabolomics, fluxes etc), global interference methods (siRNA, mutant libraries, synthetic lethality etc.) and imaging methods. Introduction to mass spectrometry and proteomics. Concepts of metabolism in microbes and higher cells. Systems biology of developmental processes. Concepts of mathematical modeling and applications of computational systems biology.
Lecture notesno script
LiteratureThe course is not taught by a particular book, but some books are suggested for further reading:

- Systems biology in Practice by Klipp, Herwig, Kowald, Wierling und Lehrach. Wiley-VCH 2005