Robert Riener: Katalogdaten im Frühjahrssemester 2018 |
Name | Herr Prof. Dr. Robert Riener |
Lehrgebiet | Sensomotorische Systeme |
Adresse | Professur f. Sensomotorische Syst. ETH Zürich, GLC G 20.1 Gloriastrasse 37/ 39 8092 Zürich SWITZERLAND |
robert.riener@hest.ethz.ch | |
Departement | Gesundheitswissenschaften und Technologie |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
151-0623-00L | ETH Zurich Distinguished Seminar in Robotics, Systems and Controls Students for other Master's programmes in Department Mechanical and Process Engineering cannot use the credit in the category Core Courses | 1 KP | 1S | B. Nelson, M. Chli, R. Gassert, M. Hutter, W. Karlen, R. Riener, R. Siegwart | |
Kurzbeschreibung | This course consists of a series of seven lectures given by researchers who have distinguished themselves in the area of Robotics, Systems, and Controls. | ||||
Lernziel | Obtain an overview of various topics in Robotics, Systems, and Controls from leaders in the field. Please see http://www.msrl.ethz.ch/education/distinguished-seminar-in-robotics--systems---controls--151-0623-0.html for a list of upcoming lectures. | ||||
Inhalt | This course consists of a series of seven lectures given by researchers who have distinguished themselves in the area of Robotics, Systems, and Controls. MSc students in Robotics, Systems, and Controls are required to attend every lecture. Attendance will be monitored. If for some reason a student cannot attend one of the lectures, the student must select another ETH or University of Zurich seminar related to the field and submit a one page description of the seminar topic. Please see http://www.msrl.ethz.ch/education/distinguished-seminar-in-robotics--systems---controls--151-0623-0.html for a suggestion of other lectures. | ||||
Voraussetzungen / Besonderes | Students are required to attend all seven lectures to obtain credit. If a student must miss a lecture then attendance at a related special lecture will be accepted that is reported in a one page summary of the attended lecture. No exceptions to this rule are allowed. | ||||
376-0004-01L | Praktikum Einführung Gesundheitswissenschaften und Technologie Nur für Gesundheitswissenschaften und Technologie BSc. | 2 KP | 2P | R. Müller, R. Riener, C. Wolfrum | |
Kurzbeschreibung | Ausgewählte Experimente im Bereich von Gesundheitswissenschaften und Technologie als Einstieg ins wissenschaftliche Arbeiten. | ||||
Lernziel | Mittels verschiedener Experimente sollen die Studierenden Methoden des wissenschaftlichen Arbeitens anwenden und erleben. | ||||
376-0022-00L | Introduction to Biomedical Engineering II | 4 KP | 3G | P. Christen, R. Riener, J. Vörös | |
Kurzbeschreibung | Introduction to biosignal processing, biomedical sensors, bioinstrumentation, bioelectric phenomena, physiological modeling and biomedical transport processes as well as to moral and ethical issues in biomedical engineering. | ||||
Lernziel | Understanding of physical and technical principles in biosignal processing, biomedical sensors, bioinstrumentation, bioelectric phenomena, physiological modeling and biomedical transport processes as well as basic moral and ethical issues in biomedical engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice. | ||||
Inhalt | Biosignal Processing, Biomedical Sensors, Bioinstrumentation, Bioelectric Phenomena, Physiological Modeling, Biomedical Transport Processes, Moral and Ethical Issues. | ||||
Skript | Stored on ILIAS. | ||||
Literatur | Introduction to Biomedical Engineering, 3rd Edition 2011, Autors: John Enderle and Joseph Bronzino, ISBN 9780123749796 Academic Press | ||||
376-0210-00L | Biomechatronics Primär für HST-Studenten ausgelegt. Die Biomechatronics Vorlesung ist nicht für Studenten geeignet, welche bereits die Vorlesung "Physical Human-Robot Interaction"(376-1504-00L) besucht haben, da sie ähnliche Themen abdeckt. Matlab Kenntnisse sind vorteilhaft -> online Tutorial http://www.imrtweb.ethz.ch/matlab/ | 4 KP | 3G | R. Riener, R. Gassert | |
Kurzbeschreibung | Development of mechatronic systems (i.e. mechanics, electronics, computer science and system integration) with inspiration from biology and application in the living (human) organism. | ||||
Lernziel | The objective of this course is to give an introduction to the fundamentals of biomechatronics, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with exercises. The course will guide students through the design and evaluation process of such systems, and highlight a number of applications. By the end of this course, you should understand the critical elements of biomechatronics and their interaction with biological systems, both in terms of engineering metrics and human factors. You will be able to apply the learned methods and principles to the design, improvement and evaluation of safe and efficient biomechatronics systems. | ||||
Inhalt | The course will cover the interdisciplinary elements of biomechatronics, ranging from human factors to sensor and actuator technologies, real-time signal processing, system kinematics and dynamics, modeling and simulation, controls and graphical rendering as well as safety/ethical aspects, and provide an overview of the diverse applications of biomechatronics technology. | ||||
Skript | Slides will be distributed through moodle before the lectures. | ||||
Literatur | Brooker, G. (2012). Introduction to Biomechatronics. SciTech Publishing. Riener, R., Harders, M. (2012) Virtual Reality in Medicine. Springer, London. | ||||
Voraussetzungen / Besonderes | None | ||||
376-1217-00L | Rehabilitation Engineering I: Motor Functions | 4 KP | 2V + 1U | R. Riener, J. Duarte Barriga | |
Kurzbeschreibung | “Rehabilitation engineering” is the application of science and technology to ameliorate the handicaps of individuals with disabilities in order to reintegrate them into society. The goal of this lecture is to present classical and new rehabilitation engineering principles and examples applied to compensate or enhance especially motor deficits. | ||||
Lernziel | Provide theoretical and practical knowledge of principles and applications used to rehabilitate individuals with motor disabilities. | ||||
Inhalt | “Rehabilitation” is the (re)integration of an individual with a disability into society. Rehabilitation engineering is “the application of science and technology to ameliorate the handicaps of individuals with disability”. Such handicaps can be classified into motor, sensor, and cognitive (also communicational) disabilities. In general, one can distinguish orthotic and prosthetic methods to overcome these disabilities. Orthoses support existing but affected body functions (e.g., glasses, crutches), while prostheses compensate for lost body functions (e.g., cochlea implant, artificial limbs). In case of sensory disorders, the lost function can also be substituted by other modalities (e.g. tactile Braille display for vision impaired persons). The goal of this lecture is to present classical and new technical principles as well as specific examples applied to compensate or enhance mainly motor deficits. Modern methods rely more and more on the application of multi-modal and interactive techniques. Multi-modal means that visual, acoustical, tactile, and kinaesthetic sensor channels are exploited by displaying the patient with a maximum amount of information in order to compensate his/her impairment. Interaction means that the exchange of information and energy occurs bi-directionally between the rehabilitation device and the human being. Thus, the device cooperates with the patient rather than imposing an inflexible strategy (e.g., movement) upon the patient. Multi-modality and interactivity have the potential to increase the therapeutical outcome compared to classical rehabilitation strategies. In the 1 h exercise the students will learn how to solve representative problems with computational methods applied to exoprosthetics, wheelchair dynamics, rehabilitation robotics and neuroprosthetics. | ||||
Skript | Lecture notes will be distributed at the beginning of the lecture (1st session) | ||||
Literatur | Introductory Books Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press. Advances in Rehabilitation Robotics – Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004. Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001. Control of Movement for the Physically Disabled. Eds.: D. Popovic, T. Sinkjaer. Springer Verlag London, 2000. Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005. Biomechanics and Neural Control of Posture and Movement. Eds.: J.M. Winters, P.E. Crago. Springer New York, 2000. Selected Journal Articles Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195. Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432 Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700. Colombo, G., Jörg, M., Jezernik, S. (2002) Automatisiertes Lokomotionstraining auf dem Laufband. Automatisierungstechnik at, vol. 50, pp. 287-295. Cooper, R. (1993) Stability of a wheelchair controlled by a human. IEEE Transactions on Rehabilitation Engineering 1, pp. 193-206. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87 Leifer, L. (1981): Rehabilitive robotics, Robot Age, pp. 4-11 Platz, T. (2003): Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht, Nervenarzt, 74, pp. 841-849 Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250. Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10. Riener, R., Fuhr, T., Schneider, J. (2002) On the complexity of biomechanical models used for neuroprosthesis development. International Journal of Mechanics in Medicine and Biology 2, pp. 389-404. Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894. | ||||
Voraussetzungen / Besonderes | Target Group: Students of higher semesters and PhD students of - D-MAVT, D-ITET, D-INFK - Biomedical Engineering - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome | ||||
376-1400-00L | Transfer of Technologies into Neurorehabilitation | 3 KP | 2V | C. Müller, R. Gassert, R. Riener, H. Van Hedel, N. Wenderoth | |
Kurzbeschreibung | The course focuses on clinical as well as industrial aspects of advanced technologies and their transfer into neurorehabilitation from both theoretical and practical perspectives. The students will learn the basics of neurorehabilitation and the linkage to technologies, gain insight into the development within the medtech field and learn applications of technologies in clinical settings. | ||||
Lernziel | The students will: - Learn basics and principles of clinical neuroscience and neurorehabilitation. - Gain insight into the technical basics of advanced technologies and the transfer into product development processes. - Gain insight into the application, the development and integration of advanced technologies in clinical settings. This includes the advantages and limitations according to different pathologies and therapy goals. - Get the opportunity to test advanced technologies in practical settings. - Learn how to transfer theoretical concepts to actual settings in different working fields. | ||||
Inhalt | Main focus: - Neurobiological principles applied to the field of neurorehabilitation. - Clinical applications of advanced rehabilitation technologies. - Visit medical technology companies, rehabilitation centers and labs to gain deeper insight into the development, application and evaluation of advanced technologie | ||||
Skript | Teaching materials will be provided for the individual events and lectures. - Slides (pdf files) - Information sheets and flyers of the visited companies, labs and clinics |