Robert Riener: Katalogdaten im Frühjahrssemester 2013 |
Name | Herr Prof. Dr. Robert Riener |
Lehrgebiet | Sensomotorische Systeme |
Adresse | Professur f. Sensomotorische Syst. ETH Zürich, GLC G 20.1 Gloriastrasse 37/ 39 8092 Zürich SWITZERLAND |
robert.riener@hest.ethz.ch | |
Departement | Gesundheitswissenschaften und Technologie |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
376-0004-00L | Einführung Gesundheitswissenschaften und Technologie II ![]() | 4 KP | 2G + 2P | R. Müller, W. Langhans, A. Mansouri, R. Riener, C. Wolfrum | |
Kurzbeschreibung | Übersicht über Methoden und Modelle in den Gesundheitswissenschaften. | ||||
Lernziel | Die Studierenden sollen die in der Fachwelt gebräuchlichen Begriffe, Modelle und Klassifikationssysteme im Bereich Gesundheit und Krankheit kennen und Methoden des wissenschaftlichen Arbeitens verstehen. Mittels verschiedener Experimente sollen sie letztere auch anwenden und erleben. | ||||
Inhalt | Übersicht über verschiedene Aspekte der Gesundheitswissenschaften (Gesundheitsmodelle, Gesundheitsförderung, Klassifikation von Gesundheit und Krankheit, etc.) und Methoden des wissenschaftlichen Arbeitens. Ausgewählte Experimente als Einstieg ins wissenschaftliche Arbeiten. | ||||
376-0004-01L | Praktikum Einführung Gesundheitswissenschaften und Technologie ![]() | 2 KP | 2P | W. Langhans, R. Riener, C. Wolfrum | |
Kurzbeschreibung | |||||
Lernziel | |||||
376-0016-00L | Praktikum Gesundheitstechnologie ![]() Findet dieses Semester nicht statt. | 2 KP | 2P | S. Lorenzetti, S. J. Ferguson, R. Gassert, R. Müller, R. Riener, J. G. Snedeker, V. Vogel, M. Zenobi-Wong | |
Kurzbeschreibung | Praktischer Laborkurs mit grundlegenden Experimenten. | ||||
Lernziel | Grundlegende Experimente zum Erlernen von Messmethoden und praktischen Anwendungen in der Gesundheitstechnologie durchführen und auswerten. | ||||
Inhalt | Zugversuch Sehne / Knochenbrecher / Bewegungsmessung Mensch / Zellkultur / Materialtestung / Mensch-Maschine - Interaktion | ||||
Skript | sind auf moodle Plattform verfügbar. | ||||
376-0022-00L | Introduction to Biomedical Engineering II ![]() ![]() | 3 KP | 3G | R. Müller, R. Riener, J. Vörös | |
Kurzbeschreibung | Significance and tasks of Biomedical Engineering in medical research and practice. Overview over the field and major areas of interest, examples. | ||||
Lernziel | Significance and tasks of Biomedical Engineering in medical research and practice. Overview over the field and major areas of interest, examples. | ||||
Inhalt | Exemplary presentation of various methods and procedures of Biomedical Engineering: Medical imaging (x-ray, computed tomography, magnetic resonance imaging and spectroscopy, ultrasound methods, positron emission tomography), neurosensory and electrophysiological measurement techniques and aids, rehabilitation engineering, medical robotics, lung and artificial ventilation, implants, medical micro- and nanotechnology, biosensors, tissue engineering. Biomedical-technical industry, socioeconomic relevance of BME. | ||||
Skript | Material will be placed online. | ||||
Literatur | Introduction to Biomedical Engineering, Third Edition John D. Enderle and Joseph D. Bronzino, Academic Press, Elsevier | ||||
376-1217-00L | Rehabilitation Engineering I: Motor Functions ![]() | 3 KP | 2V + 1U | R. Riener | |
Kurzbeschreibung | “Rehabilitation engineering” is the application of science and technology to ameliorate the handicaps of individuals with disabilities in order to reintegrate them into society. The goal of this lecture is to present classical and new rehabilitation engineering principles and examples applied to compensate or enhance especially motor deficits. | ||||
Lernziel | Provide theoretical and practical knowledge of principles and applications used to rehabilitate individuals with motor disabilities. | ||||
Inhalt | “Rehabilitation” is the (re)integration of an individual with a disability into society. Rehabilitation engineering is “the application of science and technology to ameliorate the handicaps of individuals with disability”. Such handicaps can be classified into motor, sensor, and cognitive (also communicational) disabilities. In general, one can distinguish orthotic and prosthetic methods to overcome these disabilities. Orthoses support existing but affected body functions (e.g., glasses, crutches), while prostheses compensate for lost body functions (e.g., cochlea implant, artificial limbs). In case of sensory disorders, the lost function can also be substituted by other modalities (e.g. tactile Braille display for vision impaired persons). The goal of this lecture is to present classical and new technical principles as well as specific examples applied to compensate or enhance mainly motor deficits. Modern methods rely more and more on the application of multi-modal and interactive techniques. Multi-modal means that visual, acoustical, tactile, and kinaesthetic sensor channels are exploited by displaying the patient with a maximum amount of information in order to compensate his/her impairment. Interaction means that the exchange of information and energy occurs bi-directionally between the rehabilitation device and the human being. Thus, the device cooperates with the patient rather than imposing an inflexible strategy (e.g., movement) upon the patient. Multi-modality and interactivity have the potential to increase the therapeutical outcome compared to classical rehabilitation strategies. In the 1 h exercise the students will learn how to solve representative problems with computational methods applied to exoprosthetics, wheelchair dynamics, rehabilitation robotics and neuroprosthetics. | ||||
Skript | Lecture notes will be distributed at the beginning of the lecture (1st session) | ||||
Literatur | Introductory Books Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press. Advances in Rehabilitation Robotics – Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004. Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001. Control of Movement for the Physically Disabled. Eds.: D. Popovic, T. Sinkjaer. Springer Verlag London, 2000. Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005. Biomechanics and Neural Control of Posture and Movement. Eds.: J.M. Winters, P.E. Crago. Springer New York, 2000. Selected Journal Articles Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195. Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432 Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700. Colombo, G., Jörg, M., Jezernik, S. (2002) Automatisiertes Lokomotionstraining auf dem Laufband. Automatisierungstechnik at, vol. 50, pp. 287-295. Cooper, R. (1993) Stability of a wheelchair controlled by a human. IEEE Transactions on Rehabilitation Engineering 1, pp. 193-206. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87 Leifer, L. (1981): Rehabilitive robotics, Robot Age, pp. 4-11 Platz, T. (2003): Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht, Nervenarzt, 74, pp. 841-849 Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250. Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10. Riener, R., Fuhr, T., Schneider, J. (2002) On the complexity of biomechanical models used for neuroprosthesis development. International Journal of Mechanics in Medicine and Biology 2, pp. 389-404. Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894. | ||||
Voraussetzungen / Besonderes | Target Group: Students of higher semesters and PhD students of - D-MAVT, D-ITET, D-INFK - Biomedical Engineering - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome |