Robert Riener: Katalogdaten im Frühjahrssemester 2013

NameHerr Prof. Dr. Robert Riener
LehrgebietSensomotorische Systeme
Adresse
Professur f. Sensomotorische Syst.
ETH Zürich, GLC G 20.1
Gloriastrasse 37/ 39
8092 Zürich
SWITZERLAND
E-Mailrobert.riener@hest.ethz.ch
DepartementGesundheitswissenschaften und Technologie
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
376-0004-00LEinführung Gesundheitswissenschaften und Technologie II Belegung eingeschränkt - Details anzeigen 4 KP2G + 2PR. Müller, W. Langhans, A. Mansouri, R. Riener, C. Wolfrum
KurzbeschreibungÜbersicht über Methoden und Modelle in den Gesundheitswissenschaften.
LernzielDie Studierenden sollen die in der Fachwelt gebräuchlichen Begriffe, Modelle und Klassifikationssysteme im Bereich Gesundheit und Krankheit kennen und Methoden des wissenschaftlichen Arbeitens verstehen. Mittels verschiedener Experimente sollen sie letztere auch anwenden und erleben.
InhaltÜbersicht über verschiedene Aspekte der Gesundheitswissenschaften (Gesundheitsmodelle, Gesundheitsförderung, Klassifikation von Gesundheit und Krankheit, etc.) und Methoden des wissenschaftlichen Arbeitens.
Ausgewählte Experimente als Einstieg ins wissenschaftliche Arbeiten.
376-0004-01LPraktikum Einführung Gesundheitswissenschaften und Technologie Belegung eingeschränkt - Details anzeigen 2 KP2PW. Langhans, R. Riener, C. Wolfrum
Kurzbeschreibung
Lernziel
376-0016-00LPraktikum Gesundheitstechnologie Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
2 KP2PS. Lorenzetti, S. J. Ferguson, R. Gassert, R. Müller, R. Riener, J. G. Snedeker, V. Vogel, M. Zenobi-Wong
KurzbeschreibungPraktischer Laborkurs mit grundlegenden Experimenten.
LernzielGrundlegende Experimente zum Erlernen von Messmethoden und praktischen Anwendungen in der Gesundheitstechnologie durchführen und auswerten.
InhaltZugversuch Sehne / Knochenbrecher / Bewegungsmessung Mensch / Zellkultur / Materialtestung / Mensch-Maschine - Interaktion
Skriptsind auf moodle Plattform verfügbar.
376-0022-00LIntroduction to Biomedical Engineering II Information Belegung eingeschränkt - Details anzeigen 3 KP3GR. Müller, R. Riener, J. Vörös
KurzbeschreibungSignificance and tasks of Biomedical Engineering in medical research and practice. Overview over the field and major areas of interest, examples.
LernzielSignificance and tasks of Biomedical Engineering in medical research and practice. Overview over the field and major areas of interest, examples.
InhaltExemplary presentation of various methods and procedures of Biomedical Engineering: Medical imaging (x-ray, computed tomography, magnetic resonance imaging and spectroscopy, ultrasound methods, positron emission tomography), neurosensory and electrophysiological measurement techniques and aids, rehabilitation engineering, medical robotics, lung and artificial ventilation, implants, medical micro- and nanotechnology, biosensors, tissue engineering. Biomedical-technical industry, socioeconomic relevance of BME.
SkriptMaterial will be placed online.
LiteraturIntroduction to Biomedical Engineering, Third Edition
John D. Enderle and Joseph D. Bronzino, Academic Press, Elsevier
376-1217-00LRehabilitation Engineering I: Motor Functions Information 3 KP2V + 1UR. Riener
Kurzbeschreibung“Rehabilitation engineering” is the application of science and technology to ameliorate the handicaps of individuals with disabilities in order to reintegrate them into society. The goal of this lecture is to present classical and new rehabilitation engineering principles and examples applied to compensate or enhance especially motor deficits.
LernzielProvide theoretical and practical knowledge of principles and applications used to rehabilitate individuals with motor disabilities.
Inhalt“Rehabilitation” is the (re)integration of an individual with a disability into society. Rehabilitation engineering is “the application of science and technology to ameliorate the handicaps of individuals with disability”. Such handicaps can be classified into motor, sensor, and cognitive (also communicational) disabilities. In general, one can distinguish orthotic and prosthetic methods to overcome these disabilities. Orthoses support existing but affected body functions (e.g., glasses, crutches), while prostheses compensate for lost body functions (e.g., cochlea implant, artificial limbs). In case of sensory disorders, the lost function can also be substituted by other modalities (e.g. tactile Braille display for vision impaired persons).

The goal of this lecture is to present classical and new technical principles as well as specific examples applied to compensate or enhance mainly motor deficits. Modern methods rely more and more on the application of multi-modal and interactive techniques. Multi-modal means that visual, acoustical, tactile, and kinaesthetic sensor channels are exploited by displaying the patient with a maximum amount of information in order to compensate his/her impairment. Interaction means that the exchange of information and energy occurs bi-directionally between the rehabilitation device and the human being. Thus, the device cooperates with the patient rather than imposing an inflexible strategy (e.g., movement) upon the patient. Multi-modality and interactivity have the potential to increase the therapeutical outcome compared to classical rehabilitation strategies.
In the 1 h exercise the students will learn how to solve representative problems with computational methods applied to exoprosthetics, wheelchair dynamics, rehabilitation robotics and neuroprosthetics.
SkriptLecture notes will be distributed at the beginning of the lecture (1st session)
LiteraturIntroductory Books

Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press.

Advances in Rehabilitation Robotics – Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004.

Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001.

Control of Movement for the Physically Disabled. Eds.: D. Popovic, T. Sinkjaer. Springer Verlag London, 2000.

Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005.

Biomechanics and Neural Control of Posture and Movement. Eds.: J.M. Winters, P.E. Crago. Springer New York, 2000.

Selected Journal Articles

Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195.

Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432

Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700.

Colombo, G., Jörg, M., Jezernik, S. (2002) Automatisiertes Lokomotionstraining auf dem Laufband. Automatisierungstechnik at, vol. 50, pp. 287-295.

Cooper, R. (1993) Stability of a wheelchair controlled by a human. IEEE Transactions on Rehabilitation Engineering 1, pp. 193-206.

Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87

Leifer, L. (1981): Rehabilitive robotics, Robot Age, pp. 4-11

Platz, T. (2003): Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht, Nervenarzt, 74, pp. 841-849

Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250.

Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10.

Riener, R., Fuhr, T., Schneider, J. (2002) On the complexity of biomechanical models used for neuroprosthesis development. International Journal of Mechanics in Medicine and Biology 2, pp. 389-404.

Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894.
Voraussetzungen / BesonderesTarget Group:
Students of higher semesters and PhD students of
- D-MAVT, D-ITET, D-INFK
- Biomedical Engineering
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome