## Alessandra Iozzi: Catalogue data in Autumn Semester 2021 |

Name | Prof. em. Dr. Alessandra Iozzi |

Address | Dep. Mathematik ETH Zürich, HG G 37.4 Rämistrasse 101 8092 Zürich SWITZERLAND |

Telephone | +41 44 632 35 88 |

alessandra.iozzi@math.ethz.ch | |

URL | http://www.math.ethz.ch/~iozzi |

Department | Mathematics |

Relationship | Retired Adjunct Professor |

Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|

401-0363-10L | Analysis III | 3 credits | 2V + 1U | A. Iozzi | |

Abstract | Introduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics. | ||||

Objective | Mathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations. | ||||

Content | Laplace Transforms: - Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting - Transforms of Derivatives and Integrals, ODEs - Unit Step Function, t-Shifting - Short Impulses, Dirac's Delta Function, Partial Fractions - Convolution, Integral Equations - Differentiation and Integration of Transforms Fourier Series, Integrals and Transforms: - Fourier Series - Functions of Any Period p=2L - Even and Odd Functions, Half-Range Expansions - Forced Oscillations - Approximation by Trigonometric Polynomials - Fourier Integral - Fourier Cosine and Sine Transform Partial Differential Equations: - Basic Concepts - Modeling: Vibrating String, Wave Equation - Solution by separation of variables; use of Fourier series - D'Alembert Solution of Wave Equation, Characteristics - Heat Equation: Solution by Fourier Series - Heat Equation: Solutions by Fourier Integrals and Transforms - Modeling Membrane: Two Dimensional Wave Equation - Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series - Solution of PDEs by Laplace Transform | ||||

Lecture notes | Lecture notes by Prof. Dr. Alessandra Iozzi: https://polybox.ethz.ch/index.php/s/D3K0TayQXvfpCAA | ||||

Literature | E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011 C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed. S.J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Books on Mathematics, NY. G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003. Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005 For reference/complement of the Analysis I/II courses: Christian Blatter: Ingenieur-Analysis https://people.math.ethz.ch/~blatter/dlp.html | ||||

401-3225-00L | Introduction to Lie Groups | 8 credits | 4G | A. Iozzi | |

Abstract | Topological groups and Haar measure. Definition of Lie groups, examples of local fields and examples of discrete subgroups; basic properties; Lie subgroups. Lie algebras and relation with Lie groups: exponential map, adjoint representation. Semisimplicity, nilpotency, solvability, compactness: Killing form, Lie's and Engel's theorems. Definition of algebraic groups and relation with Lie groups. | ||||

Objective | The goal is to have a broad though foundational knowledge of the theory of Lie groups and their associated Lie algebras with an emphasis on the algebraic and topological aspects of it. | ||||

Literature | A. Knapp: "Lie groups beyond an Introduction" (Birkhaeuser) A. Sagle & R. Walde: "Introduction to Lie groups and Lie algebras" (Academic Press, '73) F. Warner: "Foundations of differentiable manifolds and Lie groups" (Springer) H. Samelson: "Notes on Lie algebras" (Springer, '90) S. Helgason: "Differential geometry, Lie groups and symmetric spaces" (Academic Press, '78) A. Knapp: "Lie groups, Lie algebras and cohomology" (Princeton University Press) | ||||

Prerequisites / Notice | Topology and basic notions of measure theory. A basic understanding of the concepts of manifold, tangent space and vector field is useful, but could also be achieved throughout the semester. Course webpage: https://metaphor.ethz.ch/x/2018/hs/401-3225-00L/ | ||||

401-5000-00L | Zurich Colloquium in Mathematics | 0 credits | R. Abgrall, M. Iacobelli, A. Bandeira, A. Iozzi, S. Mishra, R. Pandharipande, University lecturers | ||

Abstract | The lectures try to give an overview of "what is going on" in important areas of contemporary mathematics, to a wider non-specialised audience of mathematicians. | ||||

Objective | |||||

401-5530-00L | Geometry Seminar | 0 credits | 1K | M. Burger, M. Einsiedler, P. Feller, A. Iozzi, U. Lang, University lecturers | |

Abstract | Research colloquium | ||||

Objective | |||||

401-5990-00L | Zurich Graduate Colloquium | 0 credits | 1K | A. Iozzi, further speakers | |

Abstract | The Graduate Colloquium is an informal seminar aimed at graduate students and postdocs whose purpose is to provide a forum for communicating one's interests and thoughts in mathematics. | ||||

Objective | |||||

406-0353-AAL | Analysis IIIEnrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 4 credits | 9R | A. Iozzi | |

Abstract | Introduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics. | ||||

Objective | Mathematical treatment of problems in science and engineering. To understand the properties of the different types of partlial differentail equations. | ||||

Content | Laplace Transforms: - Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting - Transforms of Derivatives and Integrals, ODEs - Unit Step Function, t-Shifting - Short Impulses, Dirac's Delta Function, Partial Fractions - Convolution, Integral Equations - Differentiation and Integration of Transforms Fourier Series, Integrals and Transforms: - Fourier Series - Functions of Any Period p=2L - Even and Odd Functions, Half-Range Expansions - Forced Oscillations - Approximation by Trigonometric Polynomials - Fourier Integral - Fourier Cosine and Sine Transform Partial Differential Equations: - Basic Concepts - Modeling: Vibrating String, Wave Equation - Solution by separation of variables; use of Fourier series - D'Alembert Solution of Wave Equation, Characteristics - Heat Equation: Solution by Fourier Series - Heat Equation: Solutions by Fourier Integrals and Transforms - Modeling Membrane: Two Dimensional Wave Equation - Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series - Solution of PDEs by Laplace Transform | ||||

Literature | E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011 C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed. Stanley J. Farlow, Partial Differential Equations for Scientists and Engineers, (Dover Books on Mathematics). G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003. Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005 For reference/complement of the Analysis I/II courses: Christian Blatter: Ingenieur-Analysis (Download PDF) | ||||

Prerequisites / Notice | Up-to-date information about this course can be found at: http://www.math.ethz.ch/education/bachelor/lectures/hs2013/other/analysis3_itet |