Alessandra Iozzi: Katalogdaten im Herbstsemester 2018

NameFrau Prof. em. Dr. Alessandra Iozzi
Adresse
Dep. Mathematik
ETH Zürich, HG G 50.1
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 633 81 48
E-Mailalessandra.iozzi@math.ethz.ch
URLhttp://www.math.ethz.ch/~iozzi
DepartementMathematik
BeziehungTitularprofessorin im Ruhestand

NummerTitelECTSUmfangDozierende
401-0231-10LAnalysis 1
Studierende im BSc EEIT können alternativ auch 401-1261-07L Analysis I (für BSc Mathematik, BSc Physik und BSc IN (phys.-chem. Fachrichtung)) belegen und den zugehörigen Jahreskurs prüfen lassen. Studierende im BSc EEIT, welche 401-1261-07L/401-1262-07L Analysis I/II anstelle von 401-0231-10L/401-0232-10L Analysis 1/2 belegen möchten, wenden sich vor der Belegung an ihren Studiengang.
8 KP4V + 3UA. Iozzi
KurzbeschreibungReelle und komplexe Zahlen, Vektoren, Grenzwerte, Folgen, Reihen, Potenzreihen, stetige Abbildungen, Differential- und Integralrechnung einer Variablen, Einführung in gewöhnliche Differentialgleichungen
LernzielEinfuehrung in die Grundlagen der Analysis
SkriptChristian Blatter: Ingenieur-Analysis (Kapitel 1-3)
Skript der Vorlesung (A. Iozzi)
Konrad Koenigsberger, Analysis I.
401-0363-10LAnalysis III Information 3 KP2V + 1UA. Iozzi
KurzbeschreibungIntroduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics.
LernzielMathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations.

The first lecture is on Thursday, September 27 13-15 in HG F 7 and video transmitted into HG F 5.

The reference web-page for exercise sheets, solutions and further info is
https://metaphor.ethz.ch/x/2018/hs/401-0363-10L/

The web-page to enroll for an exercise class is
https://echo.ethz.ch

The coordinator is Stefano D'Alesio
https://www.math.ethz.ch/the-department/people.html?u=dalesios

Study Center D-MAVT: 16-18 every Monday from the 3rd week of the semester (first appointment: October the 1st)
room HG E22 http://www.rauminfo.ethz.ch/Rauminfo/RauminfoPre.do?region=Z&areal=Z&gebaeude=HG&geschoss=E&raumNr=22

Study Center D-MATL: 15-17 every Wednesday from the 5th week of the semester (first appointment: October the 17th)
room HCI J 574

Ferienpräsenz:
Tuesday 15 January 2019, at 12:30-14:00, in room HG G 19.1.
Monday 21 January 2019, at 12:30-14:00, in room HG G 19.2.

Prüfungseinsicht:
Tuesday 26 February 2019, at 17:00-18:30, in room HG 19.1.
Monday 4 March 2019, at 18:15-19:45, in room HG 19.1.
InhaltLaplace Transforms:
- Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
- Transforms of Derivatives and Integrals, ODEs
- Unit Step Function, t-Shifting
- Short Impulses, Dirac's Delta Function, Partial Fractions
- Convolution, Integral Equations
- Differentiation and Integration of Transforms

Fourier Series, Integrals and Transforms:
- Fourier Series
- Functions of Any Period p=2L
- Even and Odd Functions, Half-Range Expansions
- Forced Oscillations
- Approximation by Trigonometric Polynomials
- Fourier Integral
- Fourier Cosine and Sine Transform

Partial Differential Equations:
- Basic Concepts
- Modeling: Vibrating String, Wave Equation
- Solution by separation of variables; use of Fourier series
- D'Alembert Solution of Wave Equation, Characteristics
- Heat Equation: Solution by Fourier Series
- Heat Equation: Solutions by Fourier Integrals and Transforms
- Modeling Membrane: Two Dimensional Wave Equation
- Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
- Solution of PDEs by Laplace Transform
SkriptLecture notes by Prof. Dr. Alessandra Iozzi:
https://polybox.ethz.ch/index.php/s/D3K0TayQXvfpCAA
LiteraturE. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011

C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed.

S.J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Books on Mathematics, NY.

G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003.

Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005

For reference/complement of the Analysis I/II courses:

Christian Blatter: Ingenieur-Analysis
https://people.math.ethz.ch/~blatter/dlp.html
401-4220-68LSymmetric Spaces of Non-Compact Type Belegung eingeschränkt - Details anzeigen
Number of participants limited to 10.
4 KP2SA. Iozzi
Kurzbeschreibung
Lernziel
Inhalt1) Root systems of symmetric spaces and the Weyl group
2) Action of the Weyl group
3) The geodesic boundary
4) SL(n,R)/SO(n,R)
5) Parabolic subgroups
6) Iwasawa decomposition
7) The Tits metric
Voraussetzungen / BesonderesIf you are interested in the seminar, please send an e-mail to yannick.krifka@math.ethz.ch with your mathematical background before Tuesday, August 28th.

Priority will be given to students as follows:

1) Students knowledgeable about Lie groups and symmetric spaces;
2) Students knowledgeable about symmetric spaces.

A limited number of spots might be allocated to students who do not satisfy either of the above requirements, depending on availability and background.
401-5000-00LZurich Colloquium in Mathematics Information 0 KPA. Iozzi, S. Mishra, R. Pandharipande, Uni-Dozierende
KurzbeschreibungThe lectures try to give an overview of "what is going on" in important areas of contemporary mathematics, to a wider non-specialised audience of mathematicians.
Lernziel
401-5530-00LGeometry Seminar Information 0 KP1KM. Burger, M. Einsiedler, A. Iozzi, U. Lang, A. Sisto, Uni-Dozierende
KurzbeschreibungResearch colloquium
Lernziel
401-5990-00LZurich Graduate Colloquium Information 0 KP1KA. Iozzi, Uni-Dozierende
KurzbeschreibungThe Graduate Colloquium is an informal seminar aimed at graduate students and postdocs whose purpose is to provide a forum for communicating one's interests and thoughts in mathematics.
Lernziel
406-0353-AALAnalysis III Information
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
4 KP9RA. Iozzi
KurzbeschreibungEinführung in die partiellen Differentialgleichungen. Klassifizieren und Lösen von in der Praxis wichtigen Differentialgleichungen. Es werden elliptische, parabolische und hyperbolische Differentialgleichungen behandelt. Folgende mathematischen Techniken werden vorgestellt: Laplacetransformation, Fourierreihen, Separation der Variablen, Methode der Charakteristiken.
LernzielMathematische Behandlung naturwissenschaftlicher Probleme lernen. Verstehen der Eigenschaften der verschiedenen Typen von partiellen Differentialgleichungen.
InhaltLaplace Transforms:
- Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
- Transforms of Derivatives and Integrals, ODEs
- Unit Step Function, t-Shifting
- Short Impulses, Dirac's Delta Function, Partial Fractions
- Convolution, Integral Equations
- Differentiation and Integration of Transforms

Fourier Series, Integrals and Transforms:
- Fourier Series
- Functions of Any Period p=2L
- Even and Odd Functions, Half-Range Expansions
- Forced Oscillations
- Approximation by Trigonometric Polynomials
- Fourier Integral
- Fourier Cosine and Sine Transform

Partial Differential Equations:
- Basic Concepts
- Modeling: Vibrating String, Wave Equation
- Solution by separation of variables; use of Fourier series
- D'Alembert Solution of Wave Equation, Characteristics
- Heat Equation: Solution by Fourier Series
- Heat Equation: Solutions by Fourier Integrals and Transforms
- Modeling Membrane: Two Dimensional Wave Equation
- Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
- Solution of PDEs by Laplace Transform
LiteraturE. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011

C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed.
Stanley J. Farlow, Partial Differential Equations for Scientists and Engineers, (Dover Books on Mathematics).

G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003.

Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005

For reference/complement of the Analysis I/II courses:

Christian Blatter: Ingenieur-Analysis (Download PDF)
Voraussetzungen / BesonderesWeitere Informationen unter:
http://www.math.ethz.ch/education/bachelor/lectures/hs2013/other/analysis3_itet