Janos Vörös: Catalogue data in Autumn Semester 2020 |
Name | Prof. Dr. Janos Vörös |
Field | Bioelektronik |
Address | Inst. f. Biomedizinische Technik ETH Zürich, GLC F 12.1 Gloriastrasse 37/ 39 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 59 03 |
Fax | +41 44 632 11 93 |
janos.voros@biomed.ee.ethz.ch | |
URL | http://www.lbb.ethz.ch |
Department | Information Technology and Electrical Engineering |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
227-0085-13L | Projects & Seminars: Let’s Build and Control our own Atomic Force Microscope... Only for Electrical Engineering and Information Technology BSc. The course unit can only be taken once. Repeated enrollment in a later semester is not creditable. | 3.5 credits | 3.5P | J. Vörös | |
Abstract | The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work. | ||||
Learning objective | Invented in the 1980s in Zurich and awarded with a Nobel price, the atomic force microscope (AFM) has enabled us to visualize surfaces at the single atom level, and to measure single molecule and cell-cell interactions, deepening our understanding of material science and biology. This is enabled by controlling micromechanical piezo actuators with nanometer precision and processing noisy signals in order to achieve meaningful data. In order to introduce you to the capabilities of modern AFMs in biomedical sensing, you will build your own setups in groups of two. You will be introduced to an AFM’s functionality, control, and signal read-out using LabView. A tuning fork signal will be used as the feedback for the self-built AFM. In order to better understand the working principle of a tuning fork, you will also build your own frequency sweeper and analyze it with self-built low-pass filters. After you have implemented your own setup, you will have the chance to characterize different biomedical samples on state-of-the-art setups. This data will then be analyzed using Matlab. The focus of this P&S seminar is to enable you to transfer your theoretical knowledge into practice and at the same time get to know how electrical engineering can be used in biomedical research. The course requires active participation during the practical sessions, a 10-15 min presentation and a short written report on the acquired results. The course will be given in English. Dates: 05.10, 08.10, 12.10, 15.10, , 26.10, 29.10, 9.11, 12.11 | ||||
227-0386-00L | Biomedical Engineering | 4 credits | 3G | J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong | |
Abstract | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined. | ||||
Learning objective | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations. | ||||
Content | Introduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism. Practical and theoretical exercises in small groups in the laboratory. | ||||
Lecture notes | Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino AND https://lbb.ethz.ch/education/biomedical-engineering.html | ||||
227-0393-10L | Bioelectronics and Biosensors | 6 credits | 2V + 2U | J. Vörös, M. F. Yanik, T. Zambelli | |
Abstract | The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion. | ||||
Learning objective | During this course the students will: - learn the basic concepts in biosensing and bioelectronics - be able to solve typical problems in biosensing and bioelectronics - learn about the remaining challenges in this field | ||||
Content | L1. Bioelectronics history, its applications and overview of the field - Volta and Galvani dispute - BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices - Fundamentals of biosensing - Glucometer and ELISA L2. Fundamentals of quantum and classical noise in measuring biological signals L3. Biomeasurement techniques with photons L4. Acoustics sensors - Differential equation for quartz crystal resonance - Acoustic sensors and their applications L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes L6. Optical biosensors - Differential equation for optical waveguides - Optical sensors and their applications - Plasmonic sensing L7. Basic notions of molecular adsorption and electron transfer - Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands - Electron transfer: Marcus theory, Gerischer theory L8. Potentiometric sensors - Fundamentals of the electrochemical cell at equilibrium (Nernst equation) - Principles of operation of ion-selective electrodes L9. Amperometric sensors and bioelectric potentials - Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current - Principles of operation of amperometric sensors - Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation) L10. Channels, amplification, signal gating, and patch clamp Y4 L11. Action potentials and impulse propagation L12. Functional electric stimulation and recording - MEA and CMOS based recording - Applying potential in liquid - simulation of fields and relevance to electric stimulation L13. Neural networks memory and learning | ||||
Literature | Plonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition) | ||||
Prerequisites / Notice | The course requires an open attitude to the interdisciplinary approach of bioelectronics. In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, Michaelis-Menten equation, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.). | ||||
227-0970-00L | Research Topics in Biomedical Engineering | 0 credits | 2K | K. P. Prüssmann, S. Kozerke, M. Stampanoni, K. Stephan, J. Vörös | |
Abstract | Current topics in Biomedical Engineering presented by speakers from academia and industry. | ||||
Learning objective | Getting insight into actual areas and problems of Biomedical Engineering an Health Care. |