Patrick Jenny: Catalogue data in Spring Semester 2023

Name Prof. Dr. Patrick Jenny
FieldNumerische Strömungsberechnung und Mehrskalenmodellierung
Address
Institut für Fluiddynamik
ETH Zürich, ML H 32
Sonneggstrasse 3
8092 Zürich
SWITZERLAND
Telephone+41 44 632 69 87
E-mailjenny@ifd.mavt.ethz.ch
DepartmentMechanical and Process Engineering
RelationshipFull Professor

NumberTitleECTSHoursLecturers
151-0076-11LαCentauri Restricted registration - show details
Prerequisite: Enrollment for 151-0076-10L αCentauri in HS22.
14 credits15AP. Jenny
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
ObjectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)
151-0110-00LCompressible Flows4 credits2V + 1UP. Jenny, A. A. Kubik
AbstractTopics: unsteady one-dimensional subsonic and supersonic flows, acoustics, sound propagation, supersonic flows with shocks and Prandtl-Meyer expansions, flow around slender bodies, shock tubes, reaction fronts (deflagration and detonation).
Mathematical tools: method of characteristics and selected numerical methods.
ObjectiveIllustration of compressible flow phenomena and introduction to the corresponding mathematical description methods.
ContentThe interaction of compressibility and inertia is responsible for wave generation in a fluid. The compressibility plays an important role for example in unsteady phenomena, such as oscillations in gas pipelines or exhaust pipes. Compressibility effects are also important in steady subsonic flows with high Mach numbers (M>0.3) and in supersonic flows (e.g. aeronautics, turbomachinery).
The first part of the lecture deals with wave propagation phenomena in one-dimensional subsonic and supersonic flows. The discussion includes waves with small amplitudes in an acoustic approximation and waves with large amplitudes with possible shock formation.
The second part deals with plane, steady supersonic flows. Slender bodies in a parallel flow are considered as small perturbations of the flow and can be treated by means of acoustic methods. The description of the two-dimensional supersonic flow around bodies with arbitrary shapes includes oblique shocks and Prandtl-Meyer expansions etc.. Various boundary conditions, which are imposed for example by walls or free-jet boundaries, and interactions, reflections etc. are taken into account.
Lecture notesnot available
Literaturea list of recommended textbooks is handed out at the beginning of the lecture.
Prerequisites / Noticeprerequisites: Fluiddynamics I and II
151-0111-00LResearch Seminar in Fluid Dynamics
Internal research seminar for graduate students and scientific staffs of the IFD
0 credits2SF. Coletti, P. Jenny, O. Supponen
AbstractCurrent research projects at the Institute of Fluid Dynamics are presented and discussed.
ObjectiveExchange on current internal research projects. Training of presentation skills.
ContentCurrent research projects in Fluid Dynamics
151-0212-00LAdvanced CFD Methods4 credits2V + 1UP. Jenny
AbstractFundamental and advanced numerical methods used in commercial and open-source CFD codes will be explained. The main focus is on numerical methods for conservation laws with discontinuities, which is relevant for trans- and hypersonic gas dynamics problems, but also CFD of incompressible flows, Direct Simulation Monte Carlo and the Lattice Boltzmann method are explained.
ObjectiveKnowing what's behind a state-of-the-art CFD code is not only important for developers, but also for users in order to choose the right methods and to achieve meaningful and accurate numerical results. Acquiring this knowledge is the main goal of this course.

Established numerical methods to solve the incompressible and compressible Navier-Stokes equations are explained, whereas the focus lies on finite volume methods for compressible flow simulations. In that context, first the main theory and then numerical schemes related to hyperbolic conservation laws are explained, whereas not only examples from fluid mechanics, but also simpler, yet illustrative ones are considered (e.g. Burgers and traffic flow equations). In addition, two less commonly used yet powerful approaches, i.e., the Direct Simulation Monte Carlo (DSMC) and Lattice Boltzmann methods, are introduced.

For most exercises a C++ code will have to be modified and applied.
Content- Finite-difference vs. finite-element vs. finite-volume methods
- Basic approach to simulate incompressible flows
- Brief introduction to turbulence modeling
- Theory and numerical methods for compressible flow simulations
- Direct Simulation Monte Carlo (DSMC)
- Lattice Boltzmann method
Lecture notesPart of the course is based on the referenced books. In addition, the participants receive a manuscript and the slides.
Literature"Computational Fluid Dynamics" by H. K. Versteeg and W. Malalasekera.
"Finite Volume Methods for Hyperbolic Problems" by R. J. Leveque.
Prerequisites / NoticeBasic knowledge in
- fluid dynamics
- numerical mathematics
- programming (programming language is not important, but C++ is of advantage)
151-0980-00LBiofluiddynamics4 credits2V + 1UD. Obrist, P. Jenny
AbstractIntroduction to the fluid dynamics of the human body and the modeling of physiological flow processes (biomedical fluid dynamics).
ObjectiveA basic understanding of fluid dynamical processes in the human body. Knowledge of the basic concepts of fluid dynamics and the ability to apply these concepts appropriately.
ContentThis lecture is an introduction to the fluid dynamics of the human body (biomedical fluid dynamics). For selected topics of human physiology, we introduce fundamental concepts of fluid dynamics (e.g., creeping flow, incompressible flow, flow in porous media, flow with particles, fluid-structure interaction) and use them to model physiological flow processes. The list of studied topics includes the cardiovascular system and related diseases, blood rheology, microcirculation, respiratory fluid dynamics and fluid dynamics of the inner ear.
Lecture notesLecture notes are provided electronically.
LiteratureA list of books on selected topics of biofluiddynamics can be found on the course web page.
151-1053-00LThermo- and Fluid Dynamics0 credits2KP. Jenny, R. S. Abhari, F. Coletti, G. Haller, C. Müller, N. Noiray, A. Steinfeld, O. Supponen
AbstractCurrent advanced research activities in the areas of thermo- and fluid dynamics are presented and discussed, mostly by external speakers.

The talks are public and open also for interested students.
ObjectiveKnowledge of advanced research in the areas of thermo- and fluid dynamics
ContentCurrent advanced research activities in the areas of thermo- and fluid dynamics are presented and discussed, mostly by external speakers.
401-5950-00LSeminar in Fluid Dynamics for CSE Restricted registration - show details 4 credits2SP. Jenny
AbstractEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
ObjectiveEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
Prerequisites / NoticeContact Prof. P. Jenny or PD Dr. D. Meyer-Massetti before the beginning of the semester