Patrick Jenny: Catalogue data in Autumn Semester 2022

Name Prof. Dr. Patrick Jenny
FieldNumerische Strömungsberechnung und Mehrskalenmodellierung
Address
Institut für Fluiddynamik
ETH Zürich, ML H 32
Sonneggstrasse 3
8092 Zürich
SWITZERLAND
Telephone+41 44 632 69 87
E-mailjenny@ifd.mavt.ethz.ch
DepartmentMechanical and Process Engineering
RelationshipFull Professor

NumberTitleECTSHoursLecturers
121-0100-00LModule 1: Fire Science Restricted registration - show details
Only for MAS ETH in Fire Safety Engineering.
10 credits9GA. Frangi, P. Jenny, M. Klippel, B. Merci, A. Schälin, M. Siemon, B. Zoller
Abstract
Learning objective
151-0076-10LαCentauri Restricted registration - show details
This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023.

For MAVT BSc and ITET BSc only.

Prerequisites for the focus projects:
a. Basis examination successfully passed
b. Block 1 and 2 successfully passed

For enrollment, please contact the D-MAVT Student Administration.
0 credits15AP. Jenny
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
Learning objectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)
151-0103-00LFluid Dynamics II3 credits2V + 1UP. Jenny
AbstractTwo-dimensional irrotational (potential) flows: stream function and potential, singularity method, unsteady flow, aerodynamic concepts.
Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin.
Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects.
Learning objectiveExpand basic knowledge of fluid dynamics.
Concepts, phenomena and quantitative description of irrotational (potential), rotational, and one-dimensional compressible flows.
ContentTwo-dimensional irrotational (potential) flows: stream function and potential, complex notation, singularity method, unsteady flow, aerodynamic concepts.
Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin.
Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects.
Lecture notesLecture notes are available (in German).
(See also info on literature below.)
LiteratureRelevant chapters (corresponding to lecture notes) from the textbook

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 5th ed., 2011 (includes a free copy of the DVD "Multimedia Fluid Mechanics")

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 6th ed., 2015 (does NOT include a free copy of the DVD "Multimedia Fluid Mechanics")
Prerequisites / NoticeAnalysis I/II, Knowledge of Fluid Dynamics I, thermodynamics of ideal gas
151-0109-00LTurbulent Flows4 credits2V + 1UP. Jenny
AbstractContents
- Laminar and turbulent flows, instability and origin of turbulence - Statistical description: averaging, turbulent energy, dissipation, closure problem - Scalings. Homogeneous isotropic turbulence, correlations, Fourier representation, energy spectrum - Free turbulence: wake, jet, mixing layer - Wall turbulence: Channel and boundary layer - Computation and modelling of turbulent flows
Learning objectiveBasic physical phenomena of turbulent flows, quantitative and statistical description, basic and averaged equations, principles of turbulent flow computation and elements of turbulence modelling
Content- Properties of laminar, transitional and turbulent flows.
- Origin and control of turbulence. Instability and transition.
- Statistical description, averaging, equations for mean and fluctuating quantities, closure problem.
- Scalings, homogeneous isotropic turbulence, energy spectrum.
- Turbulent free shear flows. Jet, wake, mixing layer.
- Wall-bounded turbulent flows.
- Turbulent flow computation and modeling.
Lecture notesLecture notes are available
LiteratureS.B. Pope, Turbulent Flows, Cambridge University Press, 2000
151-0111-00LResearch Seminar in Fluid Dynamics Restricted registration - show details
Internal research seminar for graduate students and scientific staffs of the IFD
0 credits2SF. Coletti, P. Jenny, O. Supponen
AbstractCurrent research projects at the Institute of Fluid Dynamics are presented and discussed.
Learning objectiveExchange on current internal research projects. Training of presentation skills.
151-1053-00LThermo- and Fluid Dynamics0 credits2KP. Jenny, R. S. Abhari, F. Coletti, G. Haller, C. Müller, N. Noiray, A. Steinfeld, O. Supponen
AbstractCurrent advanced research activities in the areas of thermo- and fluid dynamics are presented and discussed, mostly by external speakers.
Learning objectiveKnowledge of advanced research in the areas of thermo- and fluid dynamics
401-5950-00LSeminar in Fluid Dynamics for CSE Restricted registration - show details 4 credits2SP. Jenny
AbstractEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
Learning objectiveEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
Prerequisites / NoticeContact Prof. P. Jenny before the beginning of the semester