Atac Imamoglu: Catalogue data in Autumn Semester 2019

Name Prof. Dr. Atac Imamoglu
FieldQuantum electronics
Address
Institut für Quantenelektronik
ETH Zürich, HPT G 12
Auguste-Piccard-Hof 1
8093 Zürich
SWITZERLAND
Telephone+41 44 633 45 70
E-mailiatac@ethz.ch
DepartmentPhysics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
402-0053-00LPhysics II8 credits4V + 2UA. Imamoglu
AbstractThe goal of the Physics II class is an introduction to quantum mechanics
Learning objectiveTo work effectively in many areas of modern engineering, such as renewable energy and nanotechnology, students must possess a basic understanding of quantum mechanics. The aim of this course is to provide this knowledge while making connections to applications of relevancy to engineers. After completing this course, students will understand the basic postulates of quantum mechanics and be able to apply mathematical methods for solving various problems including atoms, molecules, and solids. Additional examples from engineering disciplines will also be integrated.
ContentContent:
- Wave mechanics: the old quantum theory
- Postulates and formalism of Quantum Mechanics
- First application: the quantum well and the harmonic Oscillator
- QM in three dimension: the Hydrogen atom
- Identical particles: Pauli's principle
- Crystalline Systems and band structures
- Quantum statistics
- Approximation Methods
- Applications in Engineering
- Entanglement and superposition
Lecture notesLecture notes (hand-written) will be distributed via the Moodle interface
LiteratureDavid J. Griffiths, "Introduction to quantum mechanics" Second edition, Cambridge University Press.

http://www.cambridge.org/ch/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/introduction-quantum-mechanics-2nd-edition?format=HB&isbn=9781107179868
Prerequisites / NoticePrerequisites: Physics I.
402-0444-00LAdvanced Quantum Optics
Does not take place this semester.
6 credits2V + 1UA. Imamoglu
AbstractThis course builds up on the material covered in the Quantum Optics course. The emphasis will be on quantum optics in condensed-matter systems.
Learning objectiveThe course aims to provide the knowledge necessary for pursuing advanced research in the field of Quantum Optics in condensed matter systems. Fundamental concepts and techniques of Quantum Optics will be linked to experimental research in systems such as quantum dots, exciton-polaritons, quantum Hall fluids and graphene-like materials.
ContentDescription of open quantum systems using master equation and quantum trajectories. Decoherence and quantum measurements. Dicke superradiance. Dissipative phase transitions. Spin photonics. Signatures of electron-phonon and electron-electron interactions in optical response.
Lecture notesLecture notes will be provided
LiteratureC. Cohen-Tannoudji et al., Atom-Photon-Interactions (recommended)
Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (recommended)
A collection of review articles (will be pointed out during the lecture)
Prerequisites / NoticeMasters level quantum optics knowledge
402-0551-00LLaser Seminar0 credits1ST. Esslinger, J. Faist, J. Home, A. Imamoglu, U. Keller, F. Merkt, H. J. Wörner
AbstractResearch colloquium
Learning objective