Ralf Hiptmair: Catalogue data in Spring Semester 2023

Name Prof. Dr. Ralf Hiptmair
FieldMathematik
Address
Seminar für Angewandte Mathematik
ETH Zürich, HG G 58.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 632 34 04
Fax+41 44 632 11 04
E-mailralf.hiptmair@sam.math.ethz.ch
URLhttps://www.math.ethz.ch/sam/the-institute/people/ralf-hiptmair.html
DepartmentMathematics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
401-0674-AALNumerical Methods for Partial Differential Equations
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
10 credits21RR. Hiptmair
AbstractDerivation, properties, and implementation of fundamental numerical methods for a few key partial differential equations,among them (convection)-diffusion and heat equations, wave equation, conservation laws. Implementation in C++ based on a finite element library.
Learning objectiveMain skills to be acquired in this course:
* Ability to implement fundamental numerical methods for the solution of partial differential equations efficiently.
* Ability to modify and adapt numerical algorithms guided by awareness of their mathematical foundations.
* Ability to select and assess numerical methods in light of the predictions of theory
* Ability to identify features of a PDE (= partial differential equation) based model that are relevant for the selection and performance of a numerical algorithm.
* Ability to understand research publications on theoretical and practical aspects of numerical methods for partial differential equations.
* Skills in the efficient implementation of finite element methods on unstructured meshes.

This course is neither a course on the mathematical foundations and numerical analysis of methods nor an course that merely teaches recipes and how to apply software packages.
ContentSee the contents of 401-0674-00 Numerical Methods for Partial Differential Equations
Lecture notesThe lecture will be taught in flipped classroom format:
- Video tutorials for all thematic units will be published online.
- Tablet notes accompanying the videos will be made available to the audience as PDF.
- A comprehensive PDF handout will cover all aspects of the lecture.
LiteratureSee the information given for 401-0674-00 Numerical Methods for Partial Differential Equations
Prerequisites / NoticeMastery of basic calculus and linear algebra is taken for granted.
Familiarity with fundamental numerical methods (solution methods for linear systems of equations, interpolation, approximation, numerical quadrature, numerical integration of ODEs) is essential.

Important: Coding skills and experience in C++ are essential.

Homework assignments involve substantial coding, partly based on a C++ finite element library. The written examination will be computer based and will comprise coding tasks.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Problem-solvingassessed
Project Managementfostered
Personal CompetenciesCritical Thinkingfostered
401-0674-00LNumerical Methods for Partial Differential Equations
Not meant for BSc/MSc students of mathematics.
10 credits2G + 2U + 2P + 4AR. Hiptmair
AbstractDerivation, properties, and implementation of fundamental numerical methods for a few key partial differential equations: convection-diffusion, heat equation, wave equation, conservation laws. Implementation in C++ based on a finite element library.
Learning objectiveMain skills to be acquired in this course:
* Ability to implement fundamental numerical methods for the solution of partial differential equations efficiently.
* Ability to modify and adapt numerical algorithms guided by awareness of their mathematical foundations.
* Ability to select and assess numerical methods in light of the predictions of theory
* Ability to identify features of a PDE (= partial differential equation) based model that are relevant for the selection and performance of a numerical algorithm.
* Ability to understand research publications on theoretical and practical aspects of numerical methods for partial differential equations.
* Skills in the efficient implementation of finite element methods on unstructured meshes.

This course is neither a course on the mathematical foundations and numerical analysis of methods nor an course that merely teaches recipes and how to apply software packages.
ContentSecond-order scalar elliptic boundary value problems
Finite-element methods (FEM)
FEM: Convergence and Accuracy
Non-linear elliptic boundary value problems
Second-order linear evolution problems
Convection-diffusion problems
Numerical methods for conservation laws
Lecture notesThe lecture will be taught in flipped classroom format:
- Video tutorials for all thematic units will be published online.
- Tablet notes accompanying the videos will be made available to the audience as PDF.
- A comprehensive lecture document will cover all aspects of the course, see https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
LiteratureChapters of the following books provide supplementary reading
(detailed references in course material):

* D. Braess: Finite Elemente,
Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, Springer 2007 (available online).
* S. Brenner and R. Scott. Mathematical theory of finite element methods, Springer 2008 (available online).
* A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences. Springer, New York, 2004.
* Ch. Großmann and H.-G. Roos: Numerical Treatment of Partial Differential Equations, Springer 2007.
* W. Hackbusch. Elliptic Differential Equations. Theory and Numerical Treatment, volume 18 of Springer Series in Computational Mathematics. Springer, Berlin, 1992.
* P. Knabner and L. Angermann. Numerical Methods for Elliptic and Parabolic Partial Differential Equations, volume 44 of Texts in Applied Mathematics. Springer, Heidelberg, 2003.
* S. Larsson and V. Thomée. Partial Differential Equations with Numerical Methods, volume 45 of Texts in Applied Mathematics. Springer, Heidelberg, 2003.
* R. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, UK, 2002.

However, study of supplementary literature is not important for for following the course.
Prerequisites / NoticeMastery of basic calculus and linear algebra is taken for granted.
Familiarity with fundamental numerical methods (solution methods for linear systems of equations, interpolation, approximation, numerical quadrature, numerical integration of ODEs) is essential.

Important: Coding skills and experience in C++ are essential.

Homework assignments involve substantial coding, partly based on a C++ finite element library. The written examination will be computer based and will comprise coding tasks.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Project Managementfostered
401-2673-AALNumerical Methods for CSE
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
9 credits19RR. Hiptmair
AbstractIntroduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology.
Learning objective* Knowledge of the fundamental algorithms in numerical mathematics
* Knowledge of the essential terms in numerical mathematics and the
techniques used for the analysis of numerical algorithms
* Ability to choose the appropriate numerical method for concrete problems
* Ability to interpret numerical results
* Ability to implement numerical algorithms afficiently in C++
Content1. Computing with Matrices and Vectors
2. Direct Methods for Linear Systems of Equations
3. Direct Methods for Linear Least Squares Problems
4. Filtering Algorithms
5. Data Interpolation and Data Fitting in 1D
6. Approximation of Functions in 1D
7. Numerical Quadrature
8. Iterative Methods for Non-linear Systems of Equations
12. Numerical Integration - Single Step Methods
13. Single Step Methods for Stiff Initial Value Problems
Lecture noteshttps://people.math.ethz.ch/~grsam/HS16/NumCSE/NumCSE16.pdf
LiteratureW. Dahmen, A. Reusken "Numerik für Ingenieure und Naturwissenschaftler", Springer 2006.
M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002
P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002
U. Ascher and C. Greif "A first course in Numerical Methods"
Prerequisites / NoticeExamination will be conducted at the computer and will involve coding in C++/Eigen.
A course covering the material is taught in English every autumn term (course unit 401-0663-00L). Course documents, exercises and examinations are available online.
401-3650-72LRational Approximation and Interpolation Information Restricted registration - show details 4 credits2SR. Hiptmair
AbstractThe seminar covers theory and algorithms for rational interpolation based on classical and modern literature. The various topics have to be presented by groups of students.
Learning objectiveParticipants of the seminar should acquire familiarity with the theoretical properties of approximation by means of rational functions as well as knowledge about algorithms used for computing approximating or interpolating rational functions.
ContentThe simplest and most widely used function system for approximation in computational mathematics are polynomials. They are ideally suited for smooth (analytic) functions. However, in many application we encounter functions with kinks and other kinds of singularities. In this case approximation by rational functions, that is, quotients of polynomials, may be vastly superior. This is why rational approximation and interpolation is receiving increased attention for the construction of surrogate models in model order reduction.

This seminar will study a number of research papers dealing with both theoretical and algorithmic aspects of rational approximation and interpolation.

Topics:

1. Best approximation by rational functions
2. Best rational approximation of x 7→ |x|
3. Meinardus conjecture
4. Approximation by composite rational functions
5. Rational interpolation and linearized least-squares
6. Padé approximationj
7. Vector fitting
8. The AAA algorithm for rational approximation
9. The RKFIT algorithm for non-linear rational approximation
10. Rational minimax approximation
11. Multivariate Padé approximation
12. Fast least-squares Padé approximation

Student groups will be decided and topics will be assigned during the preparatory meeting on March 1, 2023

Implementation and numerical experiments:

Quite a few of the topics are algorithmic in nature. Many of the related papers mention open
source implementations of the methods, mainly in MATLAB, often relying on the Chebfun
library. It is desirable that groups presenting an algorithmic topic also conduct numerical
experiments, those covered in the articles or others, and report their observations.

More information: https://people.math.ethz.ch/~ralfh/Seminars/RAP_23/SeminarRAP_FS23.pdf
LiteratureSee https://people.math.ethz.ch/~ralfh/Seminars/RAP_23/SeminarRAP_FS23.pdf
Prerequisites / NoticeGood skills in analysis are required as well as basic familiarity with numerical methods for interpolation and approximation with polynomials.

Preparatory meeting onj Wed March 1

Every presentation has to be done jointly by a group of 2-3 students with presenters selected at random. Every participant will have to present on 2-3 occasions.

See https://people.math.ethz.ch/~hiptmair/Seminars/RAP_23/SeminarRAP_FS23.pdf for more information.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Media and Digital Technologiesassessed
Problem-solvingassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Personal CompetenciesCritical Thinkingassessed
Self-awareness and Self-reflection assessed
401-3667-23LCase Studies Seminar (Spring Semester 2023) Information 3 credits2SV. C. Gradinaru, R. Hiptmair, R. Käppeli, M. Reiher
AbstractIn the CSE Case Studies Seminar invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list.
Learning objective
ContentIn the CSE Case Studies Seminar invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list (containing articles from, e.g., Nature, Science, Scientific American, etc.). If the underlying paper comprises more than 15 pages, two or three consecutive case studies presentations delivered by different students can be based on it. Consistency in layout, style, and contents of those presentations is expected.
Prerequisites / NoticeThe talks ar in presence only (no zoom)! Student talks are in parallel sessions in the two rooms, the invited talks take place in the larger lecture hall.

75% attendance and a short presentation on a published paper out of a list or on some own project are mandatory.

Students have to register their presentations online until the second Wednesday of the semester on
https://rw.ethz.ch/the-programme/case-studies.html

The stu­dent talks will be grouped by sub­ject, so we'll de­cide the ac­tual dates of the in­di­vidual talks.

Students that realize that they will not fulfill this criteria have to contact the teaching staff or de-register before the end of semester from the Seminar if they want to avoid a "Fail" in their documents. Later de-registrations will not be considered.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesfostered
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingfostered
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
401-5650-00LZurich Colloquium in Applied and Computational Mathematics Information 0 credits1KR. Abgrall, R. Alaifari, H. Ammari, R. Hiptmair, S. Mishra, S. Sauter, C. Schwab
AbstractResearch colloquium
Learning objective