Ralf Hiptmair: Katalogdaten im Herbstsemester 2017

NameHerr Prof. Dr. Ralf Hiptmair
LehrgebietMathematik
Adresse
Seminar für Angewandte Mathematik
ETH Zürich, HG G 58.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 34 04
Fax+41 44 632 11 04
E-Mailralf.hiptmair@sam.math.ethz.ch
URLhttps://www.math.ethz.ch/sam/the-institute/people/ralf-hiptmair.html
DepartementMathematik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
401-3667-67LCase Studies Seminar (Autumn Semester 2017)3 KP2SV. C. Gradinaru, R. Hiptmair, K. Nipp, M. Reiher
KurzbeschreibungIn der Lehrveranstaltung Fallstudien präsentieren ETH-interne und -externe Referenten Fallbeispiele aus ihren eigenen Anwendungsgebieten. Zudem müssen die Studierenden einen Kurzvortrag (10 Minuten) halten aus einer Liste von publizierten Arbeiten.
Lernziel
Voraussetzungen / Besonderes75% attendance and a short presentation on a published paper out of a list or on some own project are mandatory. Students that realize that they will not fulfill this criteria have to contact the teaching staff or de-register before the end of semester from the Seminar if they want to avoid a "Fail" in their documents. Later de-registrations will not be considered.
401-4671-00LAdvanced Numerical Methods for CSE9 KP4V + 2U + 1PR. Hiptmair
KurzbeschreibungThis course discusses modern numerical methods involving complex algorithms and intricate data structures that render an efficient implementation non-trivial. The focus will be on boundary element methods, hierarchical matrix techniques, convolution quadrature, and reduced basis methods.
Lernziel- Appreciation of the interplay of functional analysis, advanced calculus, numerical linear algebra, and sophisticated data structures in modern computer simulation technology.
- Knowledge about the main ideas and mathematical foundations underlying boundary element methods, hierarchical matrix techniques, convolution quadrature, and reduced basis methods.
- Familiarity with the algorithmic challenges arising with these methods and the main ways on how to tackle them.
- Knowledge about the algorithms' complexity and suitable data structures.
- Ability to understand details of given implementations.
- Skills concerning the implementation of algorithms and data structures in C++.
Inhalt- Boundary element methods for second-order elliptic boundary value problems.
- Local low-rank compression and hierarchical matrices.
- Numerical convolution.
- Reduced basis methods.
SkriptLecture material will be created during the course and will be made available online and in chapters.
LiteraturS. Sauter and Ch. Schwab, Boundary Element Methods, Springer 2010
O. Steinbach, Numerical approximation methods for elliptic boundary value problems, Springer 2008
M. Bebendorf, Hierarchical matrices: A means to efficiently solve elliptic boundary value problems, Springer 2008
W. Hackbusch, Hierarchical Matrices, Springer 2015
S. Boerm, Efficient Numerical Methods for Non-Local Operators: H2-Matrix Compression, Algorithms and Analysis, EMS 2010
S. Boerm, Numerical Methods for Non-Local Operators, Lecture Notes Univ. Kiel 2017
M. Hassell and F.-J. Sayas, Convolution Quadrature for Wave Simulations
Voraussetzungen / Besonderes- Familiarity with basic numerical methods (as taught in the course "Numerical Methods for CSE").
- Knowledge about the finite element method for elliptic partial differential equations (as covered in the course "Numerical Methods for Partial Differential Equations").
401-5650-00LZurich Colloquium in Applied and Computational Mathematics Information 0 KP2KR. Abgrall, R. Alaifari, H. Ammari, R. Hiptmair, A. Jentzen, S. Mishra, S. Sauter, C. Schwab
KurzbeschreibungResearch colloquium
Lernziel