Ralf Hiptmair: Katalogdaten im Herbstsemester 2017 |
Name | Herr Prof. Dr. Ralf Hiptmair |
Lehrgebiet | Mathematik |
Adresse | Seminar für Angewandte Mathematik ETH Zürich, HG G 58.2 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 34 04 |
Fax | +41 44 632 11 04 |
ralf.hiptmair@sam.math.ethz.ch | |
URL | https://www.math.ethz.ch/sam/the-institute/people/ralf-hiptmair.html |
Departement | Mathematik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-3667-67L | Case Studies Seminar (Autumn Semester 2017) | 3 KP | 2S | V. C. Gradinaru, R. Hiptmair, K. Nipp, M. Reiher | |
Kurzbeschreibung | In der Lehrveranstaltung Fallstudien präsentieren ETH-interne und -externe Referenten Fallbeispiele aus ihren eigenen Anwendungsgebieten. Zudem müssen die Studierenden einen Kurzvortrag (10 Minuten) halten aus einer Liste von publizierten Arbeiten. | ||||
Lernziel | |||||
Voraussetzungen / Besonderes | 75% attendance and a short presentation on a published paper out of a list or on some own project are mandatory. Students that realize that they will not fulfill this criteria have to contact the teaching staff or de-register before the end of semester from the Seminar if they want to avoid a "Fail" in their documents. Later de-registrations will not be considered. | ||||
401-4671-00L | Advanced Numerical Methods for CSE | 9 KP | 4V + 2U + 1P | R. Hiptmair | |
Kurzbeschreibung | This course discusses modern numerical methods involving complex algorithms and intricate data structures that render an efficient implementation non-trivial. The focus will be on boundary element methods, hierarchical matrix techniques, convolution quadrature, and reduced basis methods. | ||||
Lernziel | - Appreciation of the interplay of functional analysis, advanced calculus, numerical linear algebra, and sophisticated data structures in modern computer simulation technology. - Knowledge about the main ideas and mathematical foundations underlying boundary element methods, hierarchical matrix techniques, convolution quadrature, and reduced basis methods. - Familiarity with the algorithmic challenges arising with these methods and the main ways on how to tackle them. - Knowledge about the algorithms' complexity and suitable data structures. - Ability to understand details of given implementations. - Skills concerning the implementation of algorithms and data structures in C++. | ||||
Inhalt | - Boundary element methods for second-order elliptic boundary value problems. - Local low-rank compression and hierarchical matrices. - Numerical convolution. - Reduced basis methods. | ||||
Skript | Lecture material will be created during the course and will be made available online and in chapters. | ||||
Literatur | S. Sauter and Ch. Schwab, Boundary Element Methods, Springer 2010 O. Steinbach, Numerical approximation methods for elliptic boundary value problems, Springer 2008 M. Bebendorf, Hierarchical matrices: A means to efficiently solve elliptic boundary value problems, Springer 2008 W. Hackbusch, Hierarchical Matrices, Springer 2015 S. Boerm, Efficient Numerical Methods for Non-Local Operators: H2-Matrix Compression, Algorithms and Analysis, EMS 2010 S. Boerm, Numerical Methods for Non-Local Operators, Lecture Notes Univ. Kiel 2017 M. Hassell and F.-J. Sayas, Convolution Quadrature for Wave Simulations | ||||
Voraussetzungen / Besonderes | - Familiarity with basic numerical methods (as taught in the course "Numerical Methods for CSE"). - Knowledge about the finite element method for elliptic partial differential equations (as covered in the course "Numerical Methods for Partial Differential Equations"). | ||||
401-5650-00L | Zurich Colloquium in Applied and Computational Mathematics ![]() | 0 KP | 2K | R. Abgrall, R. Alaifari, H. Ammari, R. Hiptmair, A. Jentzen, S. Mishra, S. Sauter, C. Schwab | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel |