Helmut Bölcskei: Katalogdaten im Herbstsemester 2019

Auszeichnung: Die Goldene Eule
NameHerr Prof. Dr. Helmut Bölcskei
LehrgebietMathematische Informationswissenschaften
Adresse
Professur Math. Informationswiss.
ETH Zürich, ETF E 122
Sternwartstrasse 7
8092 Zürich
SWITZERLAND
Telefon+41 44 632 34 33
E-Mailhboelcskei@ethz.ch
URLhttps://www.mins.ee.ethz.ch/people/show/boelcskei
DepartementInformationstechnologie und Elektrotechnik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
227-0045-00LSignal- und Systemtheorie I4 KP2V + 2UH. Bölcskei
KurzbeschreibungSignaltheorie und Systemtheorie (zeitkontinuierlich und zeitdiskret): Signalanalyse im Zeit- und Frequenzbereich, Signalräume, Hilberträume, verallgemeinerte Funktionen, lineare zeitinvariante Systeme, Abtasttheoreme, zeitdiskrete Signale und Systeme, digitale Filterstrukturen, diskrete Fourier-Transformation (DFT), endlich-dimensionale Signale und Systeme, schnelle Fouriertransformation (FFT).
LernzielEinführung in die mathematische Signaltheorie und Systemtheorie.
InhaltSignaltheorie und Systemtheorie (zeitkontinuierlich und zeitdiskret): Signalanalyse im Zeit- und Frequenzbereich, Signalräume, Hilberträume, verallgemeinerte Funktionen, lineare zeitinvariante Systeme, Abtasttheoreme, zeitdiskrete Signale und Systeme, digitale Filterstrukturen, diskrete Fourier-Transformation (DFT), endlich-dimensionale Signale und Systeme, schnelle Fouriertransformation (FFT).
SkriptVorlesungsskriptum, Übungsskriptum mit Lösungen.
227-0423-00LNeural Network Theory4 KP2V + 1UH. Bölcskei, E. Riegler
KurzbeschreibungThe class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation theorems, capacity of separating surfaces, generalization, reproducing Kernel Hilbert spaces, support vector machines, fundamental limits of deep neural network learning, dimension measures, feature extraction with scattering networks
LernzielAfter attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks.
Inhalt1. Universal approximation with single- and multi-layer networks

2. Geometry of decision surfaces

3. Separating capacity of nonlinear decision surfaces

4. Generalization

5. Reproducing Kernel Hilbert Spaces, support vector machines

6. Deep neural network approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, covering numbers, fundamental limits of deep neural network learning

7. Learning of real-valued functions: Pseudo-dimension, fat-shattering dimension, Vapnik-Chervonenkis dimension

8. Scattering networks
SkriptDetailed lecture notes will be provided as we go along.
Voraussetzungen / BesonderesThis course is aimed at students with a strong mathematical background in general, and in linear algebra, analysis, and probability theory in particular.
401-5680-00LFoundations of Data Science Seminar Information 0 KPP. L. Bühlmann, A. Bandeira, H. Bölcskei, J. M. Buhmann, T. Hofmann, A. Krause, A. Lapidoth, H.‑A. Loeliger, M. H. Maathuis, G. Rätsch, C. Uhler, S. van de Geer
KurzbeschreibungResearch colloquium
Lernziel