Peter Ulrich Lehmann Grunder: Catalogue data in Autumn Semester 2024

Name Dr. Peter Ulrich Lehmann Grunder
Address
Physik der Böden u. terr. Ökosys.
ETH Zürich, CHN E 35.1
Universitätstrasse 16
8092 Zürich
SWITZERLAND
Telephone+41 44 632 63 45
E-mailpeter.lehmann@env.ethz.ch
DepartmentEnvironmental Systems Science
RelationshipLecturer

NumberTitleECTSHoursLecturers
102-0527-00LExperimental and Computer Laboratory I (Year Course) Restricted registration - show details 0 credits6PD. Braun, F. Evers, M. Floriancic, S. Frei, P. U. Lehmann Grunder, B. Lüthi, S. Pfister, F. Rüsch, D. F. Vetsch, L. von Känel
AbstractIn the Experimental and Computer Laboratory students are introduced to research and good scientific practice. Experiments are conducted in different disciplines of environmental engineering. Data collected during experiments are compared to the corresponding numeric simulations. The results are documented in reports or presentations.
Learning objectiveThe student will learn the following skills: basic scientific work, planning and conducting scientific experiments, uncertainty estimations of measurements, applied numerical simulations, modern sensor technology, writing reports.
ContentThe Experimental and Computer Laboratory is building on courses in the corresponding modules. Material from these courses is a prerequisite or co-requisite (as specified below) for participating in the Experimental and Computer Laboratory (MODULE: Project in the Experimental and Computer Laboratory):
- WatInfra: Water Network Management
- UWM: SysUWM + ProcUWM: Operation of Lab-WWTP
- AIR: Air Quality Measurements
- WasteBio: Anaerobic Digestion
- WasteRec: Plastic Recycling
- ESD: Environmental Assessment
- GROUND: Groundwater Field Course Kappelen
- WRM: Modelling Optimal Water Allocation
- FLOW: 1D Open Channel Flow Modelling
- LAND: Landscape Planning and Environmental Systems
- RIVER: Discharge Measurements
- HydEngr: Hydraulic Experiments
- RemSens: Earth Observation and Landscape Planning
- SOIL: Soil and Environmental Measurements Lab
Lecture notesWritten material will be available.
701-0535-00LEnvironmental Soil Physics/Vadose Zone Hydrology3 credits2V + 1UA. Carminati, P. U. Lehmann Grunder
AbstractThe course provides theoretical and practical foundations for understanding and characterizing physical soil properties and processes and their relevance for terrestrial ecosystems, plant growth, hydrological processes and atmospheric-land gas exchange, across all relevant scales.
Learning objectiveStudents are able to:
-Characterize the different soils based on their key textural and structural properties.
-Simulate and predict soil water retention and flow under varying environmental conditions and understand the key driving forces (capillarity, gravity, friction) and related water properties (surface tension and viscosity).
-Predict soil hydraulic properties for varying soil textural classes.
-Predict solute transport in soils for varying environmental conditions.
-Predict energy balance and temperature dynamics in soils.
-Predict conditions for plant water stress
-Estimate the impact of soil properties on the hydrological cycle and on plant growth.
ContentINTRODUCTION
Week 1 (September 18)
Presentation of the role of soil physics in environmental sciences and terrestrial ecosystems: soils in the water cycle; soils and vegetation; soils and solute transport. Survey on students' interests and expectations. Presentation of course structure and learning objectives.

BASIC SOIL PROPERTIES
Week 2 (September 25) and Week 3 (October 02)
soil texture, particle size distribution, soil structure, soil surface area, porosity and bulk density
Pore scale consideration (water in a single pore), pore sizes and shapes; surface tension; Young-Laplace equation; capillary rise; contact angle
Friction and laminar flow; Hagen-Poiseuille’s law; Washburn equation; numerical lab (REPORT 1)

SOIL HYDRAULIC PROPERTIES
Week (4 October 09) and Week 5 (October 16)
Soil water content and soil water potential - The energy state of soil water; total water potential and its components; volumetric and gravimetric water contents; field capacity and wilting point
Soil water characteristics and pore size distribution
Saturated water flow in soils - Laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; permeability and hydraulic conductivity, measurement and theoretical concepts; effective conductivity; unsaturated hydraulic conductivity; Buckingham law. Unsaturated water flow in soils - Unsaturated hydraulic conductivity models and applications

TOOLBOX – MEASUREMENTS AND MODELING
Week (6 October 23) and Week 7 (October 30)
Measuring soil hydraulic properties, fitting and interpretation; Lab tour - demonstration of soil physical methods; lecture on HYPROP method; report on Hyprop data (REPORT 2)
Modelling unsaturated water flow based on Richards equation - Using Hydrus1D for simulation of unsaturated flow; simulating HYPROP measurements (REPORT 3)

SOIL IN THE WATER CYCLE
Week 8 (November 06) – Week 9 (November 13)
Water infiltration - steady state solutions for infiltration; approximate solutions to infiltration (Green-Ampt, Philip); infiltration rate and ponding; outlook to preferential flow
Water evaporation - Energy balance and land atmosphere interactions - potential and actual evaporation, evaporation stages;

SOIL PLANT INTERACTIONS
Week 10 (November 20) Week 11 (November 27)
Root water uptake and transpiration – Theory and mechanisms controlling root water uptake; hydraulic properties of rhizosphere; plant and stomatal conductance.
Modelling root water uptake and transpiration; analytical approaches and modeling using Hydrus (REPORT 4)

SOLUTE TRANSPORT
Week 12 (December 04) Week 13 (December 11)
Transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion equation; solutions for pulse and step solute application
Transport of reactive substances, preferential flow, simulations with Hydrus

CLOSURE
Week 14 (December 18)
Summary, course synthesis, connections between the different topics, questions, exam preparation
LiteratureSupplemental textbook (not mandatory) -Introduction to Environmental Soil Physics, by: D. Hillel
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Leadership and Responsibilityfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
701-1673-00LEnvironmental Measurement Laboratory5 credits4GP. U. Lehmann Grunder, A. Carminati
AbstractMeasurements are the sole judge of scientific truth and provide access to unpredictable information, enabling the characterization and monitoring of complex terrestrial systems. Based on lectures and field- and laboratory training, the students learn to apply modern methods to determine forest inventory parameters and to measure subsurface properties and processes.
Learning objectiveThe students will be able to:
- explain measurement principles that are used for characterization of landscapes and terrestrial systems
- select appropriate measurement methods and sampling design to quantify key variables and processes above ground and in the subsurface
- deploy sensors in the field
- interpret collected laboratory and field data and report main conclusions deduced from measurements
ContentWeek 1: Plant-Soil interactions – short introduction before sensor demonstration and installation in forest lab; Scholander pressure bomb (suction in leaves); LiCOR soil chamber

Weeks 2 to 6 - Experimental Methods for Soil Health Assessment
- - - - - - - - - - - - - - - - - - - - - - - - - -
Week 2: Lecture on soil health and soil indicators; defining measurable soil health indicators for case studies for different soil threats and climate regions

Week 3: Short lecture on sampling, sensors and data logging; preparing sensors and data loggers in the lab; measurements on water content and temperature in the lab

Week 4: Short introduction on field installation; sensor installation at field site Hönggerberg

Week 5: Lecture on geophysical methods on subsurface characterization: basic principles of ERT, GPR, and EM; planning of field experiment to assess soil health

Week 6: Short introduction on data analysis; field sampling and conducting field experiment to assess soil health

Week 7: Analysis of experimental data and soil health assessment; poster presentation and discussion
- - - - - - - - - - - - - - - - - - - - - - - - - -

Week 8: Lecture on plant soil relationship; connecting information below and above ground – data analysis

Weeks 9 and 10: Forest characterization/ inventory: Principles of LiDAR; structures and features of the tree crowns, size/volume of the leaf area tree positions and diameters at breast height

Weeks 11 and 12: Eddy covariance methods -Principles for field measurement of water vapor, carbon dioxide, and energy exchange between terrestrial surfaces and the atmosphere; Analysis of measured time series to determine evaporation rate and CO2-fluxes

Week 13: Swiss Soil Monitoring networks – Monitoring of soil water content and potential; climate change and droughts

Week 14: Global data – Global modeling and data interpretation; SoilGrids and OpenLandMap; exercises on Budyko analysis
LiteratureLecture material will be online for registered students using moodle
Prerequisites / NoticeThe details of the schedule will be optimized based on the number of students; some blocks of the course will be offered as well to students of Environmental Engineering
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
Techniques and Technologiesfostered
Method-specific CompetenciesDecision-makingfostered
Problem-solvingfostered
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Personal CompetenciesCreative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered