Sven Panke: Catalogue data in Spring Semester 2019

Name Prof. Dr. Sven Panke
FieldBioprocess Engineering
Address
Bioverfahrenstechnik, Panke
ETH Zürich, BSS G 43.3
Klingelbergstrasse 48
4056 Basel
SWITZERLAND
Telephone+41 61 387 32 09
E-mailsven.panke@bsse.ethz.ch
DepartmentBiosystems Science and Engineering
RelationshipFull Professor

NumberTitleECTSHoursLecturers
626-0012-00LBioengineering
For the Focus Biomedical Engineering this course is strongly recommended to be chosen among the Electives.
4 credits3GS. Panke, J. G. Snedeker
AbstractAn introduction to biology for engineers: basic biochemistry, cell metabolism (principles of energy and mass transfer in cellular systems), cell biology (structure and composition of cells, transport processes across cell membranes, growth and reproduction of cells), cellular and molecular biophysics, quantitative tools used in bio- and biomedical engineering
ObjectiveStudents that already posses an engineering background will be exposed to a broad introduction of fundamental concepts in the fields of biology and chemistry. Focus will be given to aspects relevant to research and development projects in the fields of biotechnology, bioprocess engineering, or biomedical devices. The course will highlight technically exploitable elements in biology and chemistry, to provide the basic understanding and a necessary vocabulary for interdisciplinary communication with biologists / biotechnologists.
ContentBasic biochemistry, cell metabolism (principles of energy and mass transfer in the cell, biocatalysis and enzymes, cellular respiration, protein synthesis, regulation), cellular biology (structure and composition of cells, transport processes across cell membranes, growth and reproduction of cells) , introduction to biotechnology tools and applications of molecular and cellular engineering.
Lecture notesLecture slides and supporting material made available for download on ILIAS.
LiteratureNA Campbell, JB Reece : Biology, Oxford University Press; B. Alberts et al : Molecular Biology of the Cell , Garland Science; J. Koolman , Roehm KH : Color Atlas of Biochemistry, Thieme-Verlag.; CR Jacobs, H Huang, RY Kwon: Introduction to Cell Mechanics and Mechanobiology, Garland Science;
636-0111-00LSynthetic Biology I
Attention: This course was offered in previous semesters with the number: 636-0002-00L "Synthetic Biology I". Students that already passed course 636-0002-00L cannot receive credits for course 636-0111-00L.
4 credits3GS. Panke, J. Stelling
AbstractTheoretical & practical introduction into the design of dynamic biological systems at different levels of abstraction, ranging from biological fundamentals of systems design (introduction to bacterial gene regulation, elements of transcriptional & translational control, advanced genetic engineering) to engineering design principles (standards, abstractions) mathematical modelling & systems desig
ObjectiveAfter the course, students will be able to theoretically master the biological and engineering fundamentals required for biological design to be able to participate in the international iGEM competition (see www.syntheticbiology.ethz.ch).
ContentThe overall goal of the course is to familiarize the students with the potential, the requirements and the problems of designing dynamic biological elements that are of central importance for manipulating biological systems, primarily (but not exclusively) prokaryotic systems. Next, the students will be taken through a number of successful examples of biological design, such as toggle switches, pulse generators, and oscillating systems, and apply the biological and engineering fundamentals to these examples, so that they get hands-on experience on how to integrate the various disciplines on their way to designing biological systems.
Lecture notesHandouts during classes.
LiteratureMark Ptashne, A Genetic Switch (3rd ed), Cold Spring Haror Laboratory Press
Uri Alon, An Introduction to Systems Biology, Chapman & Hall
Prerequisites / Notice1) Though we do not place a formal requirement for previous participation in particular courses, we expect all participants to be familiar with a certain level of biology and of mathematics. Specifically, there will be material for self study available on http://www.bsse.ethz.ch/bpl/education/index as of mid January, and everybody is expected to be fully familiar with this material BEFORE THE CLASS BEGINS to be able to follow the different lectures. Please contact sven.panke@bsse.ethz.ch for access to material
2) The course is also thought as a preparation for the participation in the international iGEM synthetic biology summer competition (www.syntheticbiology.ethz.ch, http://www.igem.org). This competition is also the contents of the course Synthetic Biology II. http://www.bsse.ethz.ch/bpl/education/index
636-0115-00LBiochemical Engineering4 credits3GS. Panke, W. Minas
AbstractThe course covers the fundamentals of implementing biotechnological reactions and cultivations into reactors and major methods of product purification.
ObjectiveThe objective is to instruct students in the key concepts that are required for efficient application of biotechnological systems (enzymes and cells) for the production of chemicals and proteins.
ContentEnzyme kinetics – mass transfer in heterogeneous systems – enzyme reactors – residence time distributions - upstream processing of fermentation processes – ideal reactors – macrokinetics - gas transfer – membrane processes – chromatography
Lecture notesHandouts and text book references will be provided over the course.
LiteratureEg Pauline Doran, Bioprocess Engineering, Clark & Blanch, Biochemical Engineering, Harrison and Todd, Bioseparation Science and Engineering
636-0301-00LCurrent Topics in Biosystems Science and Engineering2 credits1SR. Platt, N. Beerenwinkel, Y. Benenson, K. M. Borgwardt, P. S. Dittrich, M. Fussenegger, A. Hierlemann, D. Iber, M. H. Khammash, D. J. Müller, S. Panke, R. Paro, S. Reddy, T. Schroeder, T. Stadler, J. Stelling
AbstractThis seminar will feature invited lectures about recent advances and developments in systems biology, including topics from biology, bioengineering, and computational biology.
ObjectiveTo provide an overview of current systems biology research.
ContentThe final list of topics will be available at http://www.bsse.ethz.ch/education/.
636-1002-AALBio II: Biochemistry
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
5 credits7RS. Panke
Abstract
Objective
LiteratureStryer “Biochemistry”, chapters: 1-18, 24, 27-32
636-1009-AALBio Lab IV: Molecular Biology II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
1 credit3RS. Panke
Abstract
Objective
ContentGene expression in prokaryotes: Construction of reporter constructs, induction and readout under different conditions, influence of degradation tags, genome editing in bacteria