Name | Prof. Dr. Edoardo Mazza |
Field | Mechanics |
Address | Institut für Mechanische Systeme ETH Zürich, LEE N 210 Leonhardstrasse 21 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 55 74 |
mazza@imes.mavt.ethz.ch | |
URL | http://www.ecm.ethz.ch |
Department | Mechanical and Process Engineering |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0303-00L | Dimensioning I | 3 credits | 3G | D. Mohr, B. Berisha, E. Mazza | |||||||||||||||||||||||||||||
Abstract | Introduction to Dimensioning of components and machine parts. Basic structural theories are introduced and a short introduction to finite elements is given. Further, elements from fracture mechanics, plasticity and stability of structures are presented. | ||||||||||||||||||||||||||||||||
Objective | The goal of the lecture is to build on and extend the theories from Mechanics 2. Students learn how to implement adequate models for practical dimensioning problems in mechanical engineering and how to solve and critically interpret these models. | ||||||||||||||||||||||||||||||||
Content | - Basic problem of continuum mechanics - Structural theories - Introduction to finite element methods - Strength of materials - Fatigue - Stability of structures | ||||||||||||||||||||||||||||||||
Lecture notes | Will be announced during the first lecture. | ||||||||||||||||||||||||||||||||
Literature | Will be announced during the first lecture. | ||||||||||||||||||||||||||||||||
151-0501-03L | Mechanics I | 6 credits | 3V + 2U + 1K | R. Hopf, E. Mazza | |||||||||||||||||||||||||||||
Abstract | Basics: Position of a material point, velocity, kinematics of rigid bodies, forces, reaction principle, mechanical power Statics: Groups of forces, moments, equilibrium of rigid bodies, reactions at supports, parallel forces, center of gravity, statics of systems, principle of virtual power, trusses, frames, forces in beams and cables, friction. | ||||||||||||||||||||||||||||||||
Objective | The understanding of the fundamentals of statics for engineers and their application in simple settings. | ||||||||||||||||||||||||||||||||
Content | Grundlagen: Lage eines materiellen Punktes; Geschwindigkeit; Kinematik starrer Körper, Translation, Rotation, Kreiselung, ebene Bewegung; Kräfte, Reaktionsprinzip, innere und äussere Kräfte, verteilte Flächen- und Raumkräfte; Leistung Statik: Aequivalenz und Reduktion von Kräftegruppen; Ruhe und Gleichgewicht, Hauptsatz der Statik; Lagerbindungen und Lagerkräfte, Lager bei Balkenträgern und Wellen, Vorgehen zur Ermittlung der Lagerkräfte; Parallele Kräfte und Schwerpunkt; Statik der Systeme, Behandlung mit Hauptsatz, mit Prinzip der virtuellen Leistungen, statisch unbestimmte Systeme; Statisch bestimmte Fachwerke, ideale Fachwerke, Pendelstützen, Knotengleichgewicht, räumliche Fachwerke; Reibung, Haftreibung, Gleitreibung, Gelenk und Lagerreibung, Rollreibung; Seilstatik; Beanspruchung in Stabträgern, Querkraft, Normalkraft, Biege- und Torsionsmoment | ||||||||||||||||||||||||||||||||
Lecture notes | Übungsblätter | ||||||||||||||||||||||||||||||||
Literature | Sayir, M.B., Dual J., Kaufmann S., Mazza E., Ingenieurmechanik 1: Grundlagen und Statik, Springer | ||||||||||||||||||||||||||||||||
173-0009-00L | Statics and Solid Mechanics ![]() Only for MAS in Advanced Fundamentals of Mechatronics Engineering | 5 credits | 11G | E. Mazza, R. Hopf | |||||||||||||||||||||||||||||
Abstract | The course introduces general methods for the analysis of stress and deformation states in mechanical parts, as needed to optimize their design and to ensure their mechanical integrity. Starting from the derivation of the basic problem, the concepts are extended to consider anisotropic materials, plasticity, viscoelasticity and viscoplasticity. Examples of engineering applications are discussed. | ||||||||||||||||||||||||||||||||
Objective | The students will be able to analyse mechanical problems, to formulate and apply design criteria involving strength, local plastification, plastic collaps, fatigue and creep. They will understand how mechanical theories are derived from basic principles as well as the role of phenomenological models. They will learn different representations of the deformation behaviour of engineering materials and the implications for the assessment of products’ function and mechanical damage. They will know how to use advanced mathematical tools to solve engineering problems. | ||||||||||||||||||||||||||||||||
Fostered competencies![]() |
|