Tilman Esslinger: Katalogdaten im Herbstsemester 2021

NameHerr Prof. Dr. Tilman Esslinger
Institut für Quantenelektronik
ETH Zürich, HPF D 4
Otto-Stern-Weg 1
8093 Zürich
Telefon+41 44 633 23 40
BeziehungOrdentlicher Professor

402-0442-00LQuantum Optics10 KP3V + 2UT. Esslinger
KurzbeschreibungThis course gives an introduction to the fundamental concepts of Quantum Optics and will highlight state-of-the-art developments in this rapidly evolving discipline. The topics covered include the quantum nature of light, semi-classical and quantum mechanical description of light-matter interaction, laser manipulation of atoms and ions, optomechanics and quantum computation.
LernzielThe course aims to provide the knowledge necessary for pursuing research in the field of Quantum Optics. Fundamental concepts and techniques of Quantum Optics will be linked to modern experimental research. During the course the students should acquire the capability to understand currently published research in the field.
InhaltThis course gives an introduction to the fundamental concepts of Quantum Optics and will highlight state-of-the-art developments in this rapidly evolving discipline. The topics that are covered include:

- coherence properties of light
- quantum nature of light: statistics and non-classical states of light
- light matter interaction: density matrix formalism and Bloch equations
- quantum description of light matter interaction: the Jaynes-Cummings model, photon blockade
- laser manipulation of atoms and ions: laser cooling and trapping, atom interferometry,
- further topics: Rydberg atoms, optomechanics, quantum computing, complex quantum systems.
SkriptSelected book chapters will be distributed.

G. Grynberg, A. Aspect and C. Fabre, Introduction to Quantum Optics
R. Loudon, The Quantum Theory of Light
Atomic Physics, Christopher J. Foot
Advances in Atomic Physics, Claude Cohen-Tannoudji and David Guéry-Odelin
C. Cohen-Tannoudji et al., Atom-Photon-Interactions
M. Scully and M.S. Zubairy, Quantum Optics
Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics
402-0484-00LExperimental and Theoretical Aspects of Quantum Gases Information
Findet dieses Semester nicht statt.
6 KP2V + 1UT. Esslinger
KurzbeschreibungQuantum Gases are the most precisely controlled many-body systems in physics. This provides a unique interface between theory and experiment, which allows addressing fundamental concepts and long-standing questions. This course lays the foundation for the understanding of current research in this vibrant field.
LernzielThe lecture conveys a basic understanding for the current research on quantum gases. Emphasis will be put on the connection between theory and experimental observation. It will enable students to read and understand publications in this field.
InhaltCooling and trapping of neutral atoms

Bose and Fermi gases

Ultracold collisions

The Bose-condensed state

Elementary excitations



Interference and Correlations

Optical lattices
Skriptnotes and material accompanying the lecture will be provided
LiteraturC. J. Pethick and H. Smith, Bose-Einstein condensation in dilute Gases,
Proceedings of the Enrico Fermi International School of Physics, Vol. CXL,
ed. M. Inguscio, S. Stringari, and C.E. Wieman (IOS Press, Amsterdam,
402-0551-00LLaser Seminar0 KP1ST. Esslinger, J. Faist, J. Home, U. Keller, F. Merkt, H. J. Wörner
KurzbeschreibungResearch colloquium